
School of Computer Science and Applied Mathematics
UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Distributed Deep Learning

Chris Fourie,358183, MSc

13 April 2019

Abstract
Deep learning techniques are an increasingly popular tool for solving a broad set of problems and showing signs that
this will continue into the foreseeable future [1]. At the core of deep learning is the neural network architecture which

to meet the requirements of general industrial performance standards, needs to be implemented at scale. Here we
investigate recent popular methods of scaling fundamental neural networks components, with implementation and
comparison of parameter sharing methods and potential application implications to healthcare research in Africa.

History and relevance

Popularity has been growing since the success of the deep learning neural network AlexNet in 2012 at ImageNet Large
Scale Visual Recognition Competition (ILSVRC). Many traditional techniques for regression, classification and cluster-
ing have since been replaced by deep learning [9]. Parallel to this there has been a rise in the use of GPUs owing to the
streaming multiprocessor (SMP) architecture that provides an order of magnitude more processes than traditional CPUs
on an individual piece of hardware or node. Additional available processes provide opportunity for scaling the training
of deep neural networks. There has also been an increase in how many nodes are used to train the neural networks. The
figures 1 and 2 reflect this progression from 2010.

Figure 1: Parallel Architectures in Deep Learning [1]

1



HPC project 2019 2

Figure 2: Characteristics of Deep Learning Clusters [1]

The management of communication between nodes is an important aspect to consider. Here MPI (Message Passing
Interface) has been used in this implementation however there are a number of other frameworks and standards, however
MPI is the most popular by a significant margin. The utility of using popular tools is seen in the documentation and
online support from the community using it, with a large set of custom solutions to frequently asked questions as well as
extremely niche questions. These can normally be found in scattered between forums, wikis and questions and answer
websites.

Parallel Strategies

Parallel Algorithms [1]

DAG and average parallelism
Every computation on a computer can be modeled as a directed acyclic graph (DAG). The vertices of the DAG are
the computations and the edges are the data dependencies (or data flow). The computational parallelism can then be
characterized by two main parameters, the graphs work W , corresponding to the total number of vertices and the graph’s
depth D as the number of vertices along the longest path in the DAG. This allows one to characterize the computational
complexity on a parallel system.

If we assume one operation per time unit, then the time needed to process the graph on a single processor (single vertex)
is number of processors = T = 1 = W and the time needed to process the graph of an infinite number of processes is
number of processors = T = ∞ = D.

Often a good measure of how many processes to execute a graph with is the average parallelism expressed as (W/D).
The execution time of such a DAG on p processors is bounded by min{W/p,D} ≤ Tp ≤ O(W/p+D) [2] [3]

Reductions
Many of the basic operation associated with neural networks can already be modeled optimally in parallel using tensors,
which is one of the reasons for their popularity. However summation or reduction operations introduce data dependencies
(edges in the DAG). This makes reduction operations a target for novel parallel algorithms.

In a reduction, a series of binary operator ⊕ are used to combine n values into some < n value and in most practical
cases into a single value. y = x1⊕ x2⊕ x3 · · ·⊕ xn−1⊕ xn. With the assumption that the operation ⊕ is associative, then
the DAG can be changed from a linear-depth structure to a base 2 logarithmic-depth tree structure as shown in figure 3.



HPC project 2019 3

Figure 3: Reduction scheme [1]

Using reductions in such a way lets one model work and depth as W = n−1 and D = dlog2 ne [1].

AllReduce
Deep learning often needs to reduce large tensors of m independent parameters and then return or broadcast the resultant
individual value of this reduction to all of the processes. Generally one tries to assign one processes per independent
parameter. MPI provides the AllReduce specification / function to achieve this, as a combination of a reduce and
broadcast operation. As GPU libraries such as NVidias CUDA generally provided much better performance on individual
hardware nodes (machines), MPI as the communication layer between nodes. The communication bandwidth between
nodes is relatively low when compare to local communication bandwidth within a node. This makes the AllReduce
operation one of the most critical operations for distributed deep learning. Using a LogP model [5],similar to an α−β

model, where L = α the point-to-point latency in the network, G = β the cost per byte and P ≤ p the number of
networked nodes. Combining this with the DAG model, the lower bound for the reduction time is Tr ≥ L log2(P). As
each element has to be sent at least once, the second lower bound is Tr ≥ γmG where γ represents the size of the single
data value sent and m is the number of values sent. We can therefore consider the size of a message being sent between
nodes to be γm and the cost per byte of that message to be G.

There are a number of algorithms for the parallel AllReduce that show differing utility with various environments,
message sizes and number of processes[4] [6]. The simplest key algorithm is to combine two trees, the first tree to
perform the reduction, the second tree to perform the broadcast, see figure 4. It’s complexity is Ttree = 2log2(P)(L+
γmG). This can be optimized with a butterfly pattern using a recursive halving reduce-scatter followed by a recursive
doubling all-gather[7], improving the time complexity to Tb f ly = log2(P)(L+γmG), see figure 4. The butterfly algorithm
is near-optimal for small messages, i.e small γm.[1]. It is not clear exactly which AllReduce algorithm is used by MPI as
there are multiple versions of implementations that vary, OpenMPI version 4.0.1 was used for this implementation. No
specific AllReduce algorithm is evident in the OpenMPI documentation and no specific algorithm could be found in the
OpenMPI source code. It is also possible that some implementations use adaptive algorithms according to their network
environment and the message properties [8].

AllReduce Ring[7]
The problem with the butterfly communication pattern is that it can cause network contention in many contemporary
clusters, such as the previously mentioned SMP or multi-core clusters. That is in a first come-first served network envi-
ronment, when two nodes try to transmit at the same time, also known as a collision. In contrast the ring-based algorithm
only requires a tree topology to be bandwidth optimal and can achieve contention-free communication in almost all con-
temporary clusters, including SMP/multicore clusters and Ethernet switched clusters with multiple switches. The ring
based structure also requires less working memory and can be applied to clusters with non-power-of-two numbers of
nodes.

A limitation of the ring algorithm is that it is only optimal in terms of bandwidth but not latency. The number of



HPC project 2019 4

Figure 4: AllReduce parallel algorithms, Credit: University Witwatersrand

communication rounds is proportional to the number of processes. Additionally in ring-based algorithms the reduction
results are computed with different "bracketing" which may cause problems in the presence of rounding errors. See
figure 5 for an example of how the broadcast step of the all reduce is implicit in the ring structure.

Cost of computing

Using the Work-Depth(W-D) model one can formulate the costs of computing the forward and backpropagation of
different layers types. Figure 6 shows a summary of these costs when considering images as inputs, where N = the
number of samples in a minibatch, C = the number of channels (usually RGB), H and W are the height and width of the
images.

This shows that the work W performed in each layer asymptotically dominates the maximal operation dependency path
D this is at most logarithmic in parameters. This reaffirms that parallelism is a major consideration in the feasibility of
evaluating and training when designing deep neural networks.

Partitioning Strategies

Data Parallelism

As most of the operators are independent with respect to N the size of the minibatch samples, the samples can be
distributed among multiple nodes and cores. Initially called pattern parallelism, this was one of the first ways distributed
deep learning was achieved. This is currently still the most popular form of paritioning.

The scaling of this approach is defined by the minibatch size N. Backpropagation can be carried out in parallel once
receiving outputs from the forward pass, which is also carried out in parallel. The weight / parameter update phase
requires that the resulting parameters of all the partitions to be averaged with respect to the entire minibatch and sent
to each participating node as each has a replicated model of the entire neural network. This requires an AllReduce
operation.



HPC project 2019 5

Figure 5: AllReduce ring-based structure

Figure 6: Complexity of various neural network layers [1]



HPC project 2019 6

Figure 7: Partitioning strategies [1]

Traditionally this was carried out using a parameter server to gather, average and broadcast the parameters to all nodes.
More recently AllReduce tree and butterfly methods have been used. Most recently ring-based methods have been
shown to have superior scalability. Industry examples of this method can be seen in Nvidas NCCL"Nickle" libary and
Horovod[10], a distributed training framework for TensorFlow, Keras, PyTorch, and MXNet. The implementation that is
carried out here attempts to reproduce the comparison of the improved performance from using a ring based AllReduce
operation versus a tree/butterfly based AllReduce operation.

One problem that persists in the data parallelism strategy is that of the batch normalisation, which requires a full syn-
chronization when carried out. Weight normalization has been suggested as an alternative which decreases the depth D
of the operator from O(logN) to O(1), removing inter-dependencies within the minibatch.

Significant gains are also seen from fragmenting minibatches into microbatches that are decomposed on individual nodes
to take advantage of hybrid CPU-GPU methods as a form of heterogeneous parallelism.

Model Parallelism

This divides model longitudinally allowing for entire forward and backward passes of a longitudinal segment to be
carried out on an individual node. This model is effective but not as widely use used as it is significantly harder to
implement and can vary according to the specific architecture of the network, for example a convolutional neural network
and a recurrent neural network models will be partitioned very differently. This makes it difficult for researches to ’drop
in’ new models or perform hyper parameter searches.

Pipelining

This divides the model into cross sections by layer, allowing for a section of the forward or backwards pass to be carried
out on an individual node. This is a fairly new technique but suffers from similar problems as model parallelism when it
comes carrying out rapid variations.

1 Experiment and implementation

Experiment
The goal of the experiment was to, using a data parellism approach, reproduce elements of the following results published
by Steffen Rochelat at Apache MXNet.



HPC project 2019 7

Figure 8: Results to reproduce

Specifically reproducing the divergence of the Tree-based AllReduce(Tree) and the ring-based AllReduce(NCCL). That
is to show that the ring-based AllReduce scales more effectively by measure of runtime T with increasing size of
messages γm sent between nodes.

Above and beyond reproducing these results, further hetrogenous parallelism with CUDA on individual nodes was
attempted, concurrently for each node run on the cluster. The matrix multiplication of the forward pass was made
parallel, assigning 1 GPU process per multiplication operation. While the program executed and the the CUDA kernel
produce superficially reasonable outputs, only an accuracy of approximately 10% was achieved, that is as good as
random.

OpenMP was considered for increasing speed of dataloading by breaking the data up into parts for each of the cpu cores
to load into local memory independently.

Implementation

A 4 layer feedforward neural network, was implemented using the Genann neural network library for C. The neural
network was train on the MNist dataset with 60000 images in the training set and 10000 images in the testing set.
Training was carried out for 20 epochs. The communication layer between nodes was OpenMPI version 4.01 The
message being passed between nodes was that of the weights of the network.

The size of the second hidden layer of the network was parameterized to provide variability in network size, that is layer
breadth and therefore message size.

A standard OpenMPI AllReduce, using a tree/butterfly-based reduced, from here on referred to as "allreduce" was im-
plemented. Additionally a synchronus and an asynchronus ring-based AllReduce was implemented "allreduce ring" and
"allreduce ring async" respectively. The synchronus ring using MPI Send and MPI Recv operations and the asynchronus
using MPI Isend and MPI recv operations.

Experiments were carried out on the University of the Witwatersrand computational cluster across 10 machines each
with 8 cores, providing 80 nodes to pass messages between. The number of nodes was also varied for consistency. Each
machine comprises an Intel core i7 CPU, Nvidia 1060 GTX GPU, 8 GB RAM.



HPC project 2019 8

Figure 9:

2 Results

Interpretation
The average across multiple experiments was used for results.

It can be seen that across multiple nodes / processes (procs) that "allreduce" tree/butterfly (green) operation scales worse
than the "allreduce ring"(blue) and the "allreduce ring async" (orange) operations.

As the number of processes decreases this advantage diminishes. For experiments with using more proces than that
available from the cluster, that is more than 80, scheduling / queuing of processes had a negative effect on performance
in terms of runtime and accuracy. This effect was more pronounced for the "allreduce" tree/butterfly operation.

Figure 16 shows the average accuracies for experiments run on 80 processes. Across all experiments the upperbound for
accuracy of the ring-based algorithms was consistently 7-10% lower than that of the tree/butterfly-based algorithm.

The reason for this is not entirely clear, however it is possible that a it was produced by a flaw in the code, however it is
also possibly caused by aforementioned "bracketing" and rounding errors. This needs to be investigated.

3 Application

Ring-based AllReduce are specifically well suited for highly distributed network structures. This could be used in
conjunction with federated distributed deep learning in the context of African health care. One could imagine a system
where health practitioners across the continent using mobile devices carry out local data collection and training, sharing
only the parameters. This has benefits for patient privacy preservation and low cost severless research collaboration
across the continent.



HPC project 2019 9

Figure 10:

Figure 11:



HPC project 2019 10

Figure 12:

Figure 13:



HPC project 2019 11

Figure 14:

Figure 15:



HPC project 2019 12

Figure 16:

4 Conclusion

The general principal of the experiments by Steffen Rochelat et al. were reproduced with data parallelism using MPI
successfully carried out. There was however a 7-10% variation in accuracy, with the ring-based AllReduce algorithms
performing consistently worse than the tree/butterfly AllReduce algorithm.

Hetrogenous parallelism combing MPI and CUDA was partially successful, as the program ran concurrently on multiple
nodes and produced outcomes, however the accuracy was that of random after training.

References
[1] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep learning: An in-depth concurrency

analysis. arXiv:1802.09941 [cs], Feb 2018. arXiv: 1802.09941.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. Journal of the
ACM (JACM), 46(5):720–748, 1999.

[3] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM (JACM),
21(2):201–206, 1974.

[4] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn. Collective communication: theory, practice, and
experience. Concurrency and Computation: Practice and Experience, 19(13):1749–1783, 2007.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. Von Eicken. Logp:
Towards a realistic model of parallel computation. In ACM Sigplan Notices, volume 28, pages 1–12. ACM, 1993.

[6] T. Hoefler and D. Moor. Energy, memory, and runtime tradeoffs for implementing collective communication
operations. Supercomputing frontiers and innovations, 1(2):58–75, 2014.

[7] P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations. Journal of
Parallel and Distributed Computing, 69(2):117âĂŞ124, Feb 2009.



HPC project 2019 1

[8] J. Pjesivac-Grbovic. Towards automatic and adaptive optimizations of mpi collective operations. page 154.

[9] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85âĂŞ117, Jan 2015.
arXiv: 1404.7828.

[10] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep learning in tensorflow, 2018.


	Experiment and implementation
	Results
	Application
	Conclusion

