
University of the Witwatersrand, Johannesburg

School of Computer Science and Applied Mathematics

Impact of Noise on Learned Value Functions at Depth in
CoAgent Networks for Neural Network Credit Assignment

Christopher Fourie
358183

Supervised by:
Prof. Benjamin Rosman

A research report submitted to the Faculty of Science, University of Witwatersrand,
in partial fulfilment of the requirements for the degree of Master of Science.

Abstract

CoAgent networks (CoANs), networks of reinforcement learning agents, have been shown to be
a biologically plausible alternative to backpropagation for solving the neural network structural
credit assignment problem [Gupta et al. 2021]. This is accomplished where many agents, each as
a neuron in a stochastic neural network, use only their local policy gradient and a global reward.
Noise is an important consideration in the learning dynamics of any stochastic neural network
[Schoenholz et al. 2017]. We investigate the impact of noise on learnt value functions for baselines
and Actor-Critic methods in CoANs at depth. We demonstrate that with additional layers,
CoANs using REINFORCE, REINFORCE with a baseline or Actor-Critic methods perform
significantly worse. However unbiased variance reduction methods are effective at alleviating
this to a moderate extent. For CoANs of increasing depth and width using Actor-Critic methods
we show that learned value functions are more sensitive to noise. We show as well that large
bootstrapping bias impacts Actor-Critic CoAN methods significantly.

Acknowledgements

There have been many amazing people who have helped make this possible:

My academic supervisor, Dr. Benjamin Rosman (Benji), their unwavering belief in my ability
has helped me believe in myself. Despite my best efforts at erratic twists and turns in my
research direction, has maintained a kindhearted demeanour throughout. You provided me an
opportunity to thrive in a space that was completely new to me.

My parents, Sandy and John. Without your long (long) standing support and love I would
probably be a practising medical doctor. Thank you for everything you have done along the
journey that has helped lead me to a place that I enjoy thoroughly. I have always appreciated
you and the values you instilled throughout my life.

My brother Simon, you’ve have always been looking out for me and I have always been looking
up to you, even when you are not literally in the sky. I hope to be able to reciprocate the many
kindnesses you have shown me over the years.

My sister and other mother, Kina and Rebecca you have helped keep me sane throughout this
journey.

Jade, my amazing unicorn of a life partner, your support on the front line sustained me through
some of the toughest moments of juggling research and a day job.

Krupa, Shahil, Elan, Geraud, Devon, Steve your interest in myself and my research is heart
warming. You are superb friends, thank you for all the time and consideration you afforded me
to bounce ideas around, helping to clarify the mystical arts of RL.

Kale-ab, Neelan, Pete, Korsti, Iffy the comradery and mutual support through the coursework
components of this journey were crucial toward becoming fluent in this area of science. It was
a fun time!

Dean, I knew how to code but you taught me how to debug, the latter has served me far better.

George, I am very grateful for the space and time to get the research done, with the assurance
that I would be able to return to work when I am ready to.

Tara, thank you for feeding me and reminding me to ”just do your best sweet pea”.

1

Contents

Page

1 Introduction 4

1.1 Motivation . 4

1.2 Objectives . 5

1.3 Outline . 5

2 Background and Related Work 6

2.1 RL and MDPs . 6

2.1.1 MDPs . 6

2.1.2 Other elements of RL . 7

2.2 Policy Gradient (PG) Algorithms . 9

2.2.1 Variance of gradient estimates . 10

2.2.2 Baselines and advantages . 11

2.2.3 Temporal Difference and Actor-Critic Methods 12

2.3 Conjugate MDPs and CoAgents . 13

2.3.1 CoAgent PG Theorem . 14

2.4 Multi-Agent Reinforcement Learning . 15

2.5 Related work . 18

2.6 Summary . 19

3 Methodology 20

3.1 Problem Statement . 20

3.2 Research Questions . 20

2

3.2.1 Sensitivity to Noise in Value Function Observations 20

3.2.2 The Effect of Bootstrapping Bias . 21

3.3 Hypotheses . 21

3.4 Problem Definition . 21

3.5 Datasets . 26

3.5.1 MNIST . 26

3.5.2 Fashion-MNIST . 26

3.6 Experiments . 26

3.6.1 Hyperparameters . 26

3.6.2 Metrics . 27

3.6.3 Bounds and Control Case . 28

3.6.4 Testing Hypothesis 1 - Variance Reduction with Unbiased Sampled Baseline 30

3.6.5 Testing Hypothesis 2 - Variance Reduction with Biased Learned Value
Functions . 31

3.7 Summary . 35

4 Results and Discussion 36

4.1 Results for Experiment 1 - Bounds and Control Case 37

4.2 Results for Experiment 2 - Variance Reduction with Unbiased Sampled Baseline 41

4.3 Results for Experiment 3 - Critic Bootstrapping and Actor-Critic at Depth . . . 42

4.4 Results for Experiment 4 - Learned Baselines at Depth 43

4.5 Results for Experiment 5 - Noisy Value Function Observations - Actor-Critic . . 44

4.6 Results for Experiment 6 - Noisy Value Function Observations - Learned Baselines 46

4.7 Summary . 47

5 Conclusion 48

Appendices 53

A Design decisions 54

3

Chapter 1

Introduction

1.1 Motivation

A common theme in machine learning and artificial intelligence literature is that for very nar-
rowly defined problems, existing methods achieve excellent performance, in some cases even
better than that of human intelligence [Goodfellow et al. 2015]. However, unlike biological
learners, for machine learning there is yet to be a method that can be applied generally to a
wide variety of problems. It is not known what is missing. There are opinions and speculation
throughout the field.

Towards artificial general intelligence (AGI) and understanding the mechanisms of our own
human intelligence, there have been few recent innovations as exciting and flexible as CoAgent
networks (CoAN). Thomas and Barto [2011] introduced the concept of a CoAN, which built on
top of Conjugate Markov Decision Process (CoMDP). CoMDPs consist of an MDP being used to
solve an MDP. Consider that a reinforcement learning (RL) agent can have policies represented
by stochastic neural networks (SNN). If a SNN policy is tasked with solving an MDP, we can
then describe a CoMDP for each neuron of the SNN to solve. Each neuron of the SNN that
is solving a CoMDP is then referred to as a conjugate RL agent (CoAgent) and the SNN of
CoAgents is referred to as a CoAgent network (CoAN) [Thomas 2011].

CoANs exhibit three characteristics that could be important for generalising learning.

The first characteristic is the ability of CoANs to describe potential solutions to problems at
various scales, since they can be defined recursively. A CoAgent can be made up of a network
of CoAgents. In other words, a CoAgent, given it is also an RL agent, can also have a policy
represented by a SNN and thus be indefinitely composed of further CoAgents. This ability to
approach problems at various scales is something that is observed in agents in complex biological
systems, where optimisation occurs at the level of a gene, a cell, an organ, an organism and an
ecosystem simultaneously.

The second characteristic is that CoANs are general enough to solve both supervised learning
and RL problems, bridging the two spaces. Kostas et al. [2019] show that CoANs, can be used
both to describe hierarchical RL as multi-agent RL (MARL) systems and are a biologically
plausible, asynchronous alternative for backpropagation (BP) in neural networks (NN) when
using policy gradient methods.

Finally, CoANs allow for biologically plausible implementation of distributed neural networks

4

that can learn complex and non-differentiable activation functions as well as update their weights
independently, using only local policy gradient information and a global reward signal [Kostas
et al. 2019].

Recently Gupta et al. [2021] provided an empirical study of CoANs, used directly as a neural
network, to solve supervised learning classification and regression tasks, open sourcing their
implementation code. Their investigation focused on practical learning dynamics of the network
and a benchmark against backpropagation. They demonstrated that, under their experimental
conditions, CoANs performed significantly worse than backpropogation.

They additionally demonstrated that the bias from actor critic methods resulted in poor per-
formance. However the reason for poor performance remains an open question.

It is clear that despite the promising characteristics of CoANs, little is known about the learning
dynamics of CoANs, and thus further research is necessary.

1.2 Objectives

This research moves towards a better understanding of the learning dynamics of CoANs, by
answering the open question raised in Gupta et al. [2021]: Why is the bias introduced by a critic
in an Actor-Critic CoAN detrimental to learning? To answer this we:

1. Show that biased value functions are sensitive to the increase in noise in CoANs as depth
and width increases. We vary depths and breadths of CoANs to understand how the
network is affected by the increase in noise.

2. Show the impact of bootstrapping bias on performance.

More specifically, we compare performance of two popular variance reduction methods (namely
baselines and temporal difference actor-critic [Weber et al. 2019]), to the control method (namely,
REINFORCE). Experiments were run on two popular machine learning benchmarks (MNIST
and FashionMNIST), for which the CoANs must perform credit assignment in a neural network
to perform classification, similarly to the setup provided by Gupta et al. [2021].

1.3 Outline

In the following research report, we provide background to CoAgent Networks in Chapter 2,
building up relevant concepts in RL and policy gradient methods in Section 2.1, and Sec-
tion 2.2. We follow with a primer on CoANs in Section 2.3. We then discuss our research
methodology in Chapter 3, describing our problem setup in Section 3.4. We introduce our cen-
tral hypotheses with an overview of our experiments in Section 3.6 and then proceed in depth
with each experiment, its results and discussion in Chapter 4, concluding in Chapter 5.

5

Chapter 2

Background and Related Work

In the following sections we build up concepts used generally by reinforcement learning (RL) (in
Section 2.1 and Section 2.2). To bridge the gap between neural networks and MARL, we provide
a neural network formulation of multi-agent reinforcement learning (MARL) with CoAgent
networks in Section 2.4, and Conjugate Markov Decision Processes (CoMDPs) in Section 2.3.

2.1 RL and MDPs

RL is a solution space for learning agents, something capable of making sequential decisions,
that must learn behaviour (a policy) through trial-and-error interactions with an environment
[Kaelbling et al. 1996]. This is formalised using optimal control of incompletely-known Markov
decision processes (MDPs) with delayed rewards (reinforcement), a concept adapted from dy-
namical systems theory [Sutton and Barto 2018a]. MDPs are a classical formalisation of sequen-
tial decision making problems. Here the most important aspects of the problem are described
by a state that an agent can sense to some extent, an action that the agent can take that will
affect that state and a goal or goals relating to the state of that environment.

When describing the RL problem with an MDP where agents move from state to state. These
movements, called transitions, are assumed to have the Markov Property, where all information
of past agent-environment interactions are contained in the current state. Said another way,
given the present, the future does not depend on the past [Kaelbling et al. 1996].

While RL can benefit from incorporating both supervised and unsupervised learning, it is distinct
from both. Supervised learning attempts to extrapolate or generalise its responses so that it acts
correctly in situations not contained in a labelled training set, which alone is not adequate for
learning from interactions. Unsupervised learning attempts to find hidden structure in unlabelled
data. RL instead tries to maximise a reward signal present in the environment, accessed via its
interactions with that environment.

2.1.1 MDPs

Markov decision processes are intended to include just three aspects, sensation, action and goal.

MDPs describe the environment that an agent interacts with. This description is expressed as

6

the tuple, M = (S,A,R, P,R, d0, γ) [Sutton and Barto 2018b], where:

S is the set of all possible states
A is the set of all possible actions
R is the set of all possible rewards
Let t ∈ {0, 1, 2, . . .} denote the time step. St, At, and Rt are the state, action, and reward at
time t and are random variables that take values in S,A, and R, respectively.

P is the transition function

P : S ×A× S → [0, 1]
given by P (s, a, s′) := Pr (St+1 = s′ | St = s,At = a)

(2.1)

R is the reward distribution

R : S ×A× S ×R → [0, 1]
given by R (s, a, s′, r) := Pr (Rt = r | St = s,At = a, St+1 = s′)

(2.2)

d0 is the initial state distribution,

γ is the discount factor, γ ∈ [0, 1]

Any method well suited to solving such problems can be considered a RL method [Sutton and
Barto 2018a].

2.1.2 Other elements of RL

Challenges exist in RL such as the trade-off between exploration and exploitation, that do not
in other types of learning. This is demonstrated by a typical Epsilon-Greedy policy method,
where a policy, π, is a mapping from an agent’s state, st in the environment at a particular
time, to an action, at, by the agent that modifies that state. Policies can be deterministic
or stochastic mappings from an agent’s state to action. Epsilon is then a tune-able variable
describing the percent of purely stochastic actions an agent takes to explore an environment.
Epsilon and therefore exploration, typically decreases over time as an agent learns more about
its environment.

Using a stochastic method, a policy π returns a probability of an action being selected when in
a specific state during a specific time step

π : S ×A → [0, 1], such that (2.3)

π(s, a) := Pr (At = a | St = s) (2.4)

The goal of reinforcement learning is to find the optimal policy for an agent to maximise an
objective function, such that the average rewards are maximised.

J(π) := E

[∞∑
t=0

γtRt | π

]
(2.5)

7

Knowing the estimated value of a state is necessary for long term optimisation. That is, opti-
misation over many sequential decisions. A reward or reward signal is immediate and primary,
provided directly by the environment, while values, as estimated predictions of rewards are sec-
ondary [Sutton and Barto 2018a]. Values are described as the estimated average rewards for
that state when using some policy

V π(s) := E

[∞∑
k=0

γkRt+k | St = s, π

]
(2.6)

Similarly, the action-value function for policy π is defined as

Qπ(s, a) := Eπ

[∞∑
k=0

γkRt+k | St = s,At = a

]
(2.7)

where q is the value or quality of taking action a in state s under a policy π

RL methods can be considered on episodic and continuing / non-terminating tasks. Here our fo-
cus is on continuing tasks however many RL expressions have been constructed to accommodate
both.

To express the infinite accumulative discounted reward that is used to estimate the value of a
state for a continuing task, recursion is used to define a return G as

Gt := Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ

(
Rt+2 + γRt+3 + γ2Rt+4 + · · ·

)︸ ︷︷ ︸
return of next state

= Rt+1 + γGt+1

(2.8)

The value functions V π and Qπ, can be estimated from experience. For example, if an agent
follows policy π and stores an average of the sampled returns that have followed that state, the
average will converge to that state value V π, as the number of times that state is visited tends
to infinity.

V π(s) := Eπ [Gt | St = s]

= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p
(
s′, r | s, a

)
[r + γ Eπ [Gt+1 | St+1 = s′]︸ ︷︷ ︸

value of next state

]

=
∑
a

π(a | s)
∑
s′,r

p
(
s′, r | s, a

)
︸ ︷︷ ︸

probability

[

sampled reward︷︸︸︷
r +γV π

(
s′
)
]︸ ︷︷ ︸

return

If an action is considered under its optimal policy ∗, then the corresponding optimal value q∗

under the optimal policy ∗ is

8

Q∗ :=
∑
s′,r

p
(
s′, r | s, a

) [
r + γmax

a′
q∗
(
s′, a′

)]
(2.9)

It is this optimal value that we try and solve for in value based RL methods.

2.2 Policy Gradient (PG) Algorithms

Policy gradient (PG) methods [Williams 1992; Sutton et al. 2000; Sutton and Barto 2018a]
estimate the gradient of an agent’s expected returns with respect to the parameters of its policy.
They represent a completely different class of solutions to traditional value based methods seen in
the previous Section 2.1.2. So where value based methods use value and policy iteration [Sutton
and Barto 2018b] to find a policy that produces an optimal value, policy based methods are
able to directly follow a policy gradient toward an optimal policy. Policy gradient methods are
useful in the context of our research as mechanism by which policy gradient CoAgent networks
find solutions [Thomas 2011].

We can use a parameterised function approximator, for instance a neural network to describe
the policy of an agent, where the network weights are represented by the parameter θ and the
parameterised policy is represented by πθ.

πθ : S ×A×Rn → [0, 1], such that for all θ ∈ Rn, πθ(·, ·) is a policy.

For PG methods it is assumed that the policies are differentiable, so that ∂π(s, a, θ)/∂θ exists
for all s ∈ S, a ∈ A, θ ∈ Rn

We use the subscript and superscript θ to show that an element is sampled using the param-
eterised policy πθ, which is itself conditioned or dependant on the parameter vector θ. This
can also be understood as an element being conditioned on a trajectory τ as sampled from an
environment using the parameterised policy πθ, i.e. θ implies τ ∼ πθ when used in subscripts or
superscripts. When considering expectation, this is used as a subscript, when used elsewhere,
this is used as a superscript. There does then exist some redundancy in our notation, however
this is intentional.

The formulation of the policy gradient theorem presented by Sutton et al. [2000] was given for
two objectives: the average reward objective for the infinite horizon setting [Mahadevan 1996]
and the discounted objective, Jγ , for the episodic setting.

Let us consider the episodic setting, as this is the setting used in our research here. In this
setting, typically the objective used is the discounted objective

J(θ) = Eθ

[∞∑
t=0

γtRt | θ

]
(2.10)

Where the objective J is a function of the policy parameters θ. This can be expressed as the
expectation for the sum of discounted rewards in an episode, also known as the discounted return
G, given a set of policy parameters θ. However, in line with work from Gupta et al. [2021] we
do not apply discounting. That is we set γ = 1. It is however important to note that errors
in the PG formulation for cases where γ < 1 are common in highly cited literature [Nota and
Thomas 2019]. We use then the undiscounted objective

9

J(θ) = Eθ

[∞∑
t=0

Rt | θ

]
(2.11)

The undiscounted PG estimate can be expressed as

∇J(θ) = Eθ

[∞∑
t=0

ψθ (St, At)Q
θ (St, At) | θ

]
(2.12)

Proofs for this equality exist in a variety of notational forms [Williams 1992; Sutton et al. 2000],
with this particular formulation being derived from Nota and Thomas [2019].

Here Qθ (St, At), is some action-value function under parameterised policy πθ. However a sam-
pled return Gθ, an advantage function Aθ(s, a) or a temporal difference error δθ can also be
used. Advantage functions are discussed in section 2.2.2 and temporal difference methods are
discussed in section 2.2.3.

ψθ (St, At) are the compatible features of a parameterised policy and represent how much θ may
be changed in order for a specific action to be more likely in a specific state. These are defined
as ψ(s, a) := ∂

∂θ lnπ
θ(s, a) = ∇ lnπθ(s, a).

In the following subsections, we consider the impact of variance on PG methods as well as
providing some background on advantage functions and temporal difference methods in the
context of PG methods.

2.2.1 Variance of gradient estimates

PG methods provide an unbiased estimate of the gradient, however in practice exhibit high
variance [Williams 2004; Sutton et al. 1999a; Baxter and Bartlett 2000]. For PG methods, a
source of instability in behaviour is the variance of gradient estimates. Decrease in PG estimate
variance can increase process stability [Zhao et al. 2012].

For PG methods, for which high variance of gradient estimates even in single agent environments
is already problematic, increases exponentially with the addition of other agents. Lowe et al.
[2017] show that the probability of taking a gradient step in the correct direction decreases
exponentially with the number of agents N in an environment. They do this by providing a
proof for

P (⟨∇̂J,∇J⟩ > 0) = (0.5)N (2.13)

where ∇̂J is the PG estimator from a single sample, and ∇J is the true gradient in a simple
cooperative scenario with N agents and binary actions: P (ai = 1) = θi. There the reward is
defined to be 1 if all actions are the same a1 = a2 = . . . = aN and 0 otherwise.

This shows that methods to decrease variance of gradient estimates for MARL problems to be
a good target when trying to stabilise learning.

10

2.2.2 Baselines and advantages

A popular method to decrease variance but to keep the gradient estimate unbiased is to use a
generalisation of the PG theorem that includes a comparison of the action value to an arbitrary
baseline b. Intuitively this baseline can be thought of as the action that is best to take on
average. Or said differently, what is the advantage of the action I have just taken with respect
to the average action. This notion is also captured in the concept of an advantage function as
shown in Equation 2.18.

Making gradient updates only considering the distance from this average helps to decrease the
magnitude of the gradient update. This means that the variance in the sizes of gradient updates
is decreased. This helps to stabilise learning as the policy parameters change less with respect
to one another for each update.

If consider the undiscounted case, where γ = 1, then baseline can be expressed as

∇Eθ[R(τ)] = Eθ

[
T−1∑
t=0

∇ lnπθ (At | St)

(
T−1∑
t′=t

Rt′ − b

)]
(2.14)

where b is any function or random variable not dependant on action a [Sutton and Barto 2018a].

Often a baseline that is an learned estimate of the state value is used b = vw(s), where w is an
arbitrary parameter vector. However one could even sample a baseline sample from a random
variable.

Considering the case of the learned state value estimate baseline, it can be shown that, despite
the inclusion of a baseline, the gradient estimates remain unbiased [Schulman et al. 2018; Takeshi
2017].

Given

∇Eθ[R(τ)] = Eθ

[
T−1∑
t=0

∇ lnπθ (At | St)

(
T−1∑
t′=t

Rt′ − b (St)

)]
(2.15)

this can be equivalently represented as

∇Eθ[R(τ)] = Eθ

[
T−1∑
t=0

∇ lnπθ (At | St)

(
T−1∑
t′=t

Rt′

)
−

T−1∑
t=0

∇ lnπθ (At | St) b (St)

]
(2.16)

then just considering the term containing the baseline

Eθ

[
∇ lnπθ (At | St) b (St)

]
= Es0,t,a0:t−1

[
Est+1:T,at:T−1

[
∇ lnπθ (At | St) b (St)

]]
= Es0,t,a0,t−1 [b (St) · Est+1:T ,at−T−1

[
∇ lnπθ (At | St)

]
= Es0:t,a0:t−1

[
b (St) · EAt

[
∇ lnπθ (At | St)

]]
= Es0:t,a0:t−1 [b (St) · 0] = 0

(2.17)

11

We can then interpret the difference of the expected action-value estimate and a baseline as the
advantage A of taking an action as compared to a baseline value. This gives us

Aθ(s, a) = Qθ(s, a)− V θ(s) (2.18)

We use Equation 2.18 to formulate what is known as advantage Actor-Critic that we use in
Experiments 5 and Experiment 3. We deal with Actor-Critic methods in the next Section 2.2.3

2.2.3 Temporal Difference and Actor-Critic Methods

Temporal difference (TD) learning provides a means for state value estimate updates in the
continuing learning case. This contrasts episodic updates from methods such as Monte Carlo
(MC) learning [Sutton and Barto 2018a, Chapter 6]. This is achieved by bootstrapping off
immediate estimates of the return instead of waiting until the end of an episode to sample the
return.

The policy update for temporal difference learning is expressed as:

qnew (s, a)← qold (s, a)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷(
r︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a′

qold
(
s′, a′

)
︸ ︷︷ ︸

estimate of optimal future value︸ ︷︷ ︸
new value (temporal difference target)

− qold (s, a)︸ ︷︷ ︸
old value

)

(2.19)

Here one can see bootstrapping as updating a value estimate using a previous estimate. Under-
standably when taking an estimate of an estimate, one will accumulate estimation error. This
is referred to as bootstrapping bias [Sutton and Barto 2018b].

If the bootstrapping bias introduced is not too high, then this method can be used to increase
performance via variance reduction. Variance arises due to the accumulated stochasticity and
noise in a trajectory. Variance is reduced when an update occurs over a step or number of steps
that are less than the total steps in an episode. For example a TD(0) method that updates
using 1 step trajectories, will accumulate less randomness and noise in a single transition than
a MC method that uses an update from an episode length trajectory.

Actor-critic methods combine the state value estimation (the critic) with PG methods (the
actor) to enable the use of TD methods for the case of continuing learning and thus a means for
variance reduction. An overview of how these two parts interact is illustrated in Figure 2.1.

The Critic looks to solve the temporal credit assignment problem. The Critic can assign positive
values to sensory states that are not associated with immediate reward but predict that reward
will be obtained in the future.

After each action selection, the critic evaluates the new state to determine whether things have
gone better or worse than expected. That evaluation is the TD error:

12

Figure 2.1: Actor-critic overview [Sutton and Barto 2018a]

∇J(θ) = Eθ

T−1∑
t=0

∇ lnπθ (At | St)︸ ︷︷ ︸
actor

δθt︸︷︷︸
critic

 (2.20)

where

δθt = Rθ
t+1 + γV θ (St+1)− V θ (St) (2.21)

Noting that for our research, we use the undiscounted formulation where γ = 1.

For MARL problems various centralised and decentralised actor-critic techniques have been
developed that, for instance, might pre-train a centralised critic at scale, to then have each actor
maintain its own critic once deployed. [Lowe et al. 2017; Iqbal and Sha 2019].

2.3 Conjugate MDPs and CoAgents

Broadly a Conjugate Markov Decision Process (CoMDP) can be considered as using an MDP
to solve an MDP, although its interpretation is flexible [Thomas and Barto 2011].

Formally, a CoMDP is a direct optimisation of the expected return. Phrased in a general way:
it is the search for a mapping, f , from the state set to some other set or space U . U generalises
some types of destinations for policy mappings of an agent. That is, for representation discovery,
U would be the feature space, for motor primitive discovery U would be the action set of a MDP,
for skill discovery it would be the termination probabilities. The goal is to find the mapping f∗,
that maximises the agent’s expected return. While an agent solves a MDP, a CoAgent, solves
the search for f∗, the CoMDP. In this way it can be viewed as a form of meta learning.

The usefulness of CoMDPs arise as they are a general approach to search any mapping used by
any algorithm attempting to solve an MDP, where we are interested in the maximum expected
return. An example of this usefulness is the generalisation of the hierarchical RL option-critic
architecture [Bacon et al. 2017] as seen in Kostas and Thomas (2019) Kostas et al. [2019] using

13

CoAgent networks and CoMDPs. Here this generality allows use to describe a hierarchical
network of RL agents architected as a feedforward neural network.

Figure 2.2 depicts the recursive nature of a CoMDP with an agent comprised of sub-agents /
CoAgents. Figure 2.3 is an example of a feedforward network using CoAgents as neurons, where
the entire network is the agent.

Figure 2.2: CoMDP compared to MDP

Figure 2.3: Example depicting feedforward network of CoAgents. Action generation is a three
step process. The node in the middle denotes the ith CoAgent. In the first step, nodes preceding
the ith CoAgent are executed to compute its inputs, Upre

t . In the second step, the ith CoAgent
uses these inputs to produce its output Ut. In the third step the remainder of the network is
executed to produce an action. [Kostas et al. 2019]

2.3.1 CoAgent PG Theorem

For a CoAgent network we can describe the parameters as

θ =
(
θi, θ̄i

)
(2.22)

14

where θ are the parameters that describe the policy of an agent solving the original MDP, θi are
the parameters of the ith CoAgent and θ̄i are the parameters of all other CoAgents, excluding
the ith CoAgent.

Where each CoAgent is cooperating to maximise the team reward, [Kostas et al. 2019, Property
11] assert a property of the CoAgent Policy Gradient Theorem that an individual CoAgent’s
objective function is equivalent to the team objective function, such that J(θ) = Ji (θi)

The theorem [Kostas et al. 2019, Theorem 1], then states that the gradient of the team objective
function ∇J(θ) with respect to θ, is a composition of CoAgent’s policy gradients such that:

∇J(θ) =
[
∆1 (θ1)

⊤ ,∆2 (θ2)
⊤ , . . . ,∆m (θm)⊤

]⊤
(2.23)

where m is the number of coagents and ∆i is the local policy gradient of the i thcoagent.

The proof is below and follows from other properties of CoAgents provided by Kostas et al.
[2019]

∇J(θ) =
[
∂J(θ)⊤

∂θ1
,
∂J(θ)⊤

∂θ2
, . . . ,

∂J(θ)⊤

∂θm

]⊤
=

[
∂J1 (θ1)

⊤

∂θ1
,
∂J2 (θ2)

⊤

∂θ2
, . . . ,

∂Jm (θm)⊤

∂θm

]⊤

=

[
∆1 (θ1)

⊤

∂θ1
,
∆2 (θ2)

⊤

∂θ2
, . . . ,

∆m (θm)⊤

∂θm

]⊤
(2.24)

We can then express the local policy gradient updated for the ith CoAgent as

∆i (θi) := Eθ

[∞∑
t=0

γtGt
∂ ln (πi (Xt, Ut, θi))

∂θi
| θ

]
(2.25)

∆i (θi) is equivalent to the policy gradient of the ith CoMDP, making the update rule:

θi ← θi + α
∞∑
t=0

γtGt

(
∂ ln (πi (Xt, Ut, θi))

∂θi

)
(2.26)

One of the interpretations of CoMDPs being used to form CoAgent networks is as a multi-agent
reinforcement learning system, which is dealt with in the next Section 2.4.

2.4 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is where a team of agents interacts with an en-
vironment and each other to learn distributed policies for sequential decision making. MARL
has already been shown to be applicable to a variety of domains, including robotics, distributed

15

control, telecommunications, resource management, collaborative decision support systems, and
economics [Buşoniu et al. 2010]. Its usefulness is however limited due to problems that arise
when scaling the number of agents [Bernstein et al. 2002; Zhang et al. 2019b]. This ability to
scale is crucial for many problems in the multi-agent setting where agents are numerous [Canese
et al. 2021b].

When trying to scale any MARL system, one can consider a solution to lie on either side of a
spectrum.

On one side of the spectrum, suppose we try model the entire system as the joint action space of
a single RL agent attempting to represent the actions of many or all agents in an environment.
While this may be feasible for a very small joint action space, it fails to scale, due to the curse of
dimensionality. In MARL systems the dimension of the joint action space increases exponentially
with the number of agents [Hernandez-Leal et al. 2017]. Each additional agent’s action space is
added to the existing joint-action space combinatorially.

One the other side of the spectrum, is the case of independent learners, where each RL agent
considers every other agent as part of the environment. From the perspective of an individual
agent, concurrent learning of RL agents makes the environment appear to be non-stationary or
unstable, which in turn causes learning to be unstable. This is one of the most well-known issues
in MARL [Buşoniu et al. 2010; Tuyls and Weiss 2012; Hernandez-Leal et al. 2017]. The actions
and subsequent policy updates of one agent affects the rewards of other agents and the evolution
of the state. This results in each agent having to account for how every other agent behaves
and adapts to the joint behaviour. For single agent RL, convergence guarantees have been
developed with the assumption that environments are static and Markovian. In MARL, since
any single agent’s environment is dynamic and non-stationary, standard single agent algorithms
are not able to accommodate this. It has been shown that ignoring the existence of other agent’s
behaviours may cause a failure to converge [Tan 1997; Claus and Boutilier 1998].

In our CoAN each neuron is an independent learner, using only local observations and a global
reward signal to update its policy. Scaling this MARL system can be considered a problem of
coordination in distributed control.

A popular example of this problem [Hu et al. 2021; Zhang et al. 2019a] is to try coordinate the
movement and interaction of motor vehicles at a traffic intersection. We provide a toy gridworld
example in Figure 2.4, where all agents receive a global positive reward if any of them get to their
destination or goal quickly and a global negative reward for collisions. While this environment
does not directly relate to our problem, we believe this example serves to help orient our intuition
for agents that need to learn in the presence of other agents.

16

Figure 2.4: Coordinating a grid world traffic intersection as a distributed control problem.

This is serves to elucidate a problem at the heart of our cooperative MARL problem. With an
increase in the number of agents, so too does the potential for unwanted collisions increase.

More generally, a collision is any combination of actions that when occurring together, drive
down the global reward. In the context of our CoAN where agents have stochastic policies,
the more stochastic the policy, the less predictable the RL agent, the higher the chance for
uncoordinated actions. Toward a solution for this problem we could perhaps assign blame to
agents that are responsible for collisions. A näıve approach may be to decrease the stochasticity
of all agents to decrease the number of collisions. However, with low stochasticity exploration
is hindered and learning can slow down immensely or get stuck indefinitely in local optima.
Effectively deciding who is to blame for failure and who is to credit for successes when there
is only a global reward available is at the heart of the cooperative MARL credit assignment
problem. That is, MARL credit assignment is described as deducing the individual contribution
of an agent to the team’s success [Nguyen et al. 2018]. Quantifying the credit that is assigned
to an agent and how that can be used to increase team success is non-trivial and can depend on
the problem description.

Credit assignment in a neural network (NN) context, for instance is described as the contribution
of each synapse to the network’s overall performance [Lillicrap and Santoro 2019]. Backpropaga-
tion of error signals is the canonical method for assigning credit (or blame) in a NN. Derivatives
of the error between the target output of the NN and the actual output are used to adjust the
synaptic weights between neurons. Data that has been labelled is used as the target output of
the NN, a foundation of supervised learning.

In our context we use CoANs to address the neural network credit assignment using a global
reward signal generated, given the difference between the labelled data and our CoANs output
action. The use of global reward signal the CoAgents are able to follow a policy gradient
and progressively assign credit to weights in a network without the need for backpropagation
throughout the entire network.

17

2.5 Related work

Work on CoMDPs and CoAgent networks was initiated by Thomas and Barto [2011], providing
the theoretical principles and interpretations for the space, that include the interpretation of
CoAgent networks as a cooperative MARL system. They present a novel approach to accom-
plish both representation and skill or option discovery [Sutton et al. 1999b] using reinforcement
learning. Additionally, they describe how group coordinate ascent of CoAgents using policy
gradient methods [Williams 2004] can solve problems together. They provided an example of
the first CoAN that is shown to successfully to solve a high dimensional navigation task.

This work was extended by Thomas [2011], introducing novel Actor-Critic methods for CoANs
and emphasises the biological realism of this approach. They empirically showed the effects of
various interventions to reduce the variance of CoANs, highlighting the importance of variance
consideration in this space. Following this Thomas and Barto [2012] continue work on motor
primitive discovery.

Kostas et al. [2019] builds on the previous works, with a strong emphasis on providing more
extensive theoretical proofs for CoANs using policy gradient methods. They also provide an
example an option-critic [Bacon et al. 2017] as a CoAN to show how CoANs can be used to
generally describe hierarchical reinforcement learning setups as MARL systems.

Recently Gupta et al. [2021] provide an empirical study of CoANs used directly as a neural
network to solve supervised learning classification and regression tasks, open sourcing their
implementation code1. Investigations focus on practical learning dynamics of the network and
a benchmark against backpropagation.

Our research extends this work with a focus toward understanding how value functions used
by variance reduction methods are affected by the noisy signals propagated within CoANs. We
apply this to use of variance reduction for deeper CoANs.

CoANs are stochastic neural networks (SNNs), where the policies of each neurons can them-
selves be described as stochastic neural networks. Being able to generally describe and link
deterministic, stochastic neural networks and reinforcement learning is the focus of Schulman
et al. [2016]; Weber et al. [2019]. Their framework is general enough to include CoANs and is a
useful tool for formalising ideas of baselines and actor-critics for CoANs.

Toward a better understanding of the learning dynamics for SNNs, Merkh and Montúfar [2019]
provide proofs and discuss the theoretical bounds of SNN width and depth as each relate to the
SNNs ability carry out universal function approximation. Specifically on the depth of informa-
tion propagation in SNN, Schoenholz et al. [2017] discuss the limits of depth for deterministic
NNs with respect to their initialisation. They showed that with the correct critical initialisation
an arbitrarily deep network can be trained. However they also show that if a network is made
stochastic using Dropout, then this property is lost and a theoretical limit exists. Pretorius et al.
[2020] extend this with an investigation of critical initialisation’s usefulness in the absence of an
arbitrary depth training guarantee. They conclude that “it is likely to be a fruitless endeavour”.
These works helped orient our intuition and expectations for the possible depths of CoANs as
SNNs.

SNN are used in the neuroscience space to model spiking neural networks. Aenugu et al. [2019]
showed that CoANs can be applied similarly to spiking neural networks. Lastly Zini et al. [2020]
provide a theoretical summary of CoANs with a focus on hierarchical reinforcement learning and

1https://openreview.net/attachment?id=nz2iUi-iZLQname=code

18

an empirical study that includes option-critic and tuning of various hyperparameters. Their code
is openly available2.

2.6 Summary

In this chapter we build up concepts around RL. First on MDPs to describe sequential decision
making problems and how RL can be used to solve these types of problems. We continue within
RL methods, specifically on policy gradient methods and how they suffer from high variance in
practice. We show how this high variance can be mitigated using temporal difference learning
and how temporal difference learning can be enabled in a policy gradient context through the
introduction of a critic that uses value based methods.

We build up the concept of CoAgents starting with conjugate MDPs, that is, MDPs describing
MDPs. We then provide a high level introduction to using policy gradient methods for CoAgents.
We then provide an intuitive example for how CoAgent networks can be interpreted as MARL
systems. Following this we discuss related work, with a roughly chronological framing.

In the following Chapter 3 we discuss our methodology. Here we define our research problem
and hypotheses, as well as describing in detail our experimental setup.

2https://github.com/mojishoki/Coagent-Networks-Revisited

19

Chapter 3

Methodology

3.1 Problem Statement

Recently Gupta et al. [2021] provided an empirical study of CoANs used directly as a neural
network to solve supervised learning classification and regression tasks. Their investigation
focused on practical learning dynamics of the network and a benchmark against backpropagation.
They demonstrated that, under their experimental conditions, CoANs performed significantly
worse than backpropagation.

They additionally demonstrated that the bias from actor critic methods resulted in poor per-
formance. However the reason for poor performance remains an open question.

It is clear that despite the promising characteristics of CoANs, little is known about the learning
dynamics of CoANs, and thus further research is necessary.

3.2 Research Questions

This research moves towards a better understanding of the learning dynamics of CoANs, by
answering the open question raised in Gupta et al. [2021]: Why is the bias introduced by a critic
in an Actor-Critic CoAN extremely detrimental to learning?

To answer this question, we investigate two directions: (i) Sensitivity to Noise in Value Function
Observations (ii) The Effect of Bootstrapping Bias.

3.2.1 Sensitivity to Noise in Value Function Observations

Schoenholz et al. [2017] suggest a theoretical maximum depth for stochastic neural networks.
This theoretical maximum is hypothesised to exist due to the existence of noise which inhibits
information propagation through the stochastic neural networks.

High variance of gradient estimates for each agent are a significant source of instability, as is
for any MARL system using policy gradient updates [Canese et al. 2021b; Hernandez-Leal et al.
2017]. Thus, as any stochastic MARL system increases in size (such as a CoAN), the noise in
the network increases.

20

Therefore it is important to examine the sources of noise within the network, as well as the
impact of that noise on learning.

We investigate the sensitivity of biased value function observations to the increase in noise
in CoANs as network depth and width increase. We vary depths and breadths of CoANs to
understand how the network is effected by the increase in noise due to network size changes.

3.2.2 The Effect of Bootstrapping Bias

Bootstrapping is a notorious source of instability, being one of the three components of deadly
triad [Sutton and Barto 2018b], the other two being function approximation and off-policy meth-
ods. As a secondary investigation, we look at the effect of bootstrapping bias on performance.

3.3 Hypotheses

Toward answering the questions above in Section 3.2, we formulate two hypotheses. It cannot
be assumed that variance reduction will be beneficial in every CoAN configuration, and so we
formulate our first hypothesis to test this as follows:

Hypothesis 1 Variance reduction methods can help stabilise learning and increasing perfor-
mance of CoANs at any depth and breadth.

The causes of decreased performance for actor-critic methods in CoANs could be singular or
multi-factorial. We choose noise as a singular possible component to test, because SNNs exhibit
noise as discussed in Section 2.5. To include learned baselines, we generalise beyond Actor-Critic
to any learned function approximator that could be used to reduce variance.

We formulate our hypothesis about noise in CoANs, as per Section 3.2.1, as follows:

Hypothesis 2 Variance reduction methods using biased value estimates by a learned function
approximator (value function) are more sensitive to additional noise in deeper CoANs than in
shallower CoANs

3.4 Problem Definition

Credit assignment in a feedforward neural network with backpropagation is carried out during
optimisation of an objective function, with the error being mapped directly to neuron weight
updates via recursively applying the chain rule [Goodfellow et al. 2015].

One of the main contributions from Gupta et al. [2021], was describing an equivalent MARL
optimisation problem where error is communicated via a global reward signal, with credit as-
signment updates for neuronal weights occurring as each individual reinforcement learning agent
neuron works toward optimising their own objective by following a policy gradient.

In the following we describe this problem definition from Gupta et al. [2021]. Fundamentally it
is a Markov decision problem that has a finite time horizon or Finite horizon MDP. Said another
way, it is a MDP that has a finite number of steps and is not ongoing. The problem exists at the

21

intersection of reinforcement learning (RL) and neural networks. In an effort to form a bridge
between these two areas of research we try blend concepts and terminology from both. To start,
we equate RL time steps and the layers of a neural network(NN). This is done by considering
the input layer as time step zero and the first hidden layer as time step one. As the input data
traverses the neural network from layer to layer, these are state transitions. One can see these
state transitions across the NN depicted in figure 3.1.

To note, the problem was originally described generally for both the discrete and continuous
case, however we choose to only consider the discrete action case as it has been shown to be
more stable than the continuous action case.

More formally, given a fully connected feedforward neural network composed of k layers, with
each layer containing n neurons, where each neuron’s activation function is a probabilistic map-
ping from state to action described by a reinforcement learning agent’s stochastic policy π. This
policy is parameterised by the neuron’s weight vector θ. We treat the input of the neuron as its
state observation s. For an arbitrary neuron i in an arbitrary layer j, a binary discrete action
ai,j ∈ [0, 1], is sampled from a Bernoulli distribution produced by neuronal weights. We go into
further detail on the exact mechanism of it here 3.4 and depict it in figure 3.2.

(a)

Figure 3.1: Neural network forward pass as a finite horizon MDP adapted from Gupta et al.
[2021]

We describe the sampling of the action ai,j from this distribution as

Ai,j ∼ π(·|Si,j , θi,j) (3.1)

For the input layer of the CoAN Sj=0, there exist a vector input or or initial state for the CoAN
X sampled from a supervised learning dataset (e.g. MNIST) where X ∈ Rd and for each x,
there is a labelled inference target y. We can express the action selection for the input layer of
the CoAN as

Ai,0 ∼ π(·|X, θi,0) (3.2)

For all downstream layers of the network that are not the input layer j ̸= 0, a neuron’s state
observation are the actions of all the neurons from the previous layer Sj = Aj−1

22

Ai,j ∼ π(·|Aj−1, θi,j) (3.3)

Assuming a fully connected network, every neuron then in a layer j sees the same state ob-
servation s. For notional simplicity regarding equations 3.1, 3.2 and 3.3, we use the following
to generally express action selection of a single CoAgent receiving an input vector Sj from the
preceding layer

Ai,j ∼ πθ(·|Sj) (3.4)

Each layer j in the network represents and is equivalent to a time-step t of a finite horizon
MDP, where the finite time horizon or terminal time-step is equivalent to the terminal layer of
the network k.

The only time step or layer to receive a reward is the terminal layer k as the negative of the
prediction error from the action of this layer ak and the labelled target y. We then let the return
for any layer G be the undiscounted sum of the rewards to give us the following equations

Rk := − err(Ak, Y)

G =

k∑
j=0

Rj = Rk

G = − err (Ak, Y)

(3.5)

Where err(Ak, Y) is an arbitrary error function for a prediction Ak and labelled target Y . A
transition between states is represented as a progression to downstream layers. Using a mean
square error, we let a full episode trajectory τ take the form s0, a0, r0, s1, a1, r1...sk, ak, rk such
that

j = 0 : S0 = x, A0 = a0, R0 = 0

j = 1 : S1 = a0, A1 = a1, R1 = 0

...

j = k : Sk = ak−1, Ak = ak, Rk = −(ak − y)2

(3.6)

These transitions are Markov, because given a state s1 and the corresponding action from that
state a1, the transition to the next state s2 is independent of s1.

The probability of a trajectory τ , is given by

p(τ) = p(x)πθ(a0|s0)p(s1|s0, a0)πθ(aj |sj)...p(sk|sk−1,ak−1
)πθ(ak|sk)p(y|x) (3.7)

Where p(x) is the probability of the initial start state, πθ (a0, a1, . . . , ak | x) is the probability
of all actions taken from x and p(y | x) describes the probability of reward on termination.
However as our state transitions are deterministic, this can be simplified to

p(τ) = p(x)πθ (a0, a1, . . . , ak | x) p(y | x) (3.8)

23

Our expected return can then be expressed as

E[G] =

∫
p(τ) G dτ

E[G] =

∫
p(x)πθ (a0, a1, . . . , ak | x) p(y | x) G dxda0 . . . dakdy

(3.9)

We define an undiscounted objective function for our CoAgent network similarly as for a typical
reinforcement learning agent with a parameterised policy using equation 2.11, however our
expectation includes dependencies related to sampling our supervised training dataset

J(θ) : = E[G | θ, x, y]
J(θ) = Eθ,p(x,y)[G]

(3.10)

so that by applying the policy gradient theorem in equation 2.12, the policy gradient of the
CoAgent network for a layer j is

∇J(θj) = Eθ,p(x,y)

[
Qθ (Sj , Aj)∇ lnπθ (Aj | Sj)

]
(3.11)

Then by equations 2.23, 2.24, 2.25 we can describe the local policy gradient for the ith CoAgent
in the jth layer as

∇J(θi,j) = Eθ,p(x,y)

[
Qθ (Si,j , Ai,j)∇ lnπθ (Ai,j | Si,j)

]
(3.12)

However as each CoAgent in a layer, receives the same input vector we can simplify the state
component of this expression to

∇J(θi,j) = Eθ,p(x,y)

[
Qθ (Sj , Ai,j)∇ lnπθ (Ai,j | Sj)

]
(3.13)

Using stochastic gradient ascent

θt+1 = θt + α ̂∇J (θt) (3.14)

we can then describe a CoAN episodic weight update for a layer as

θj,e ← θj,e + θj,e−1 α Q
θ(Sj , Ai,j) ∇θ lnπ

θ (Aj | Sj) (3.15)

or rather more simply as the equality

∆θi,j = α Qθ(Sj , Ai,j) ∇θ lnπ
θ (Ai,j | Sj) (3.16)

To get a better intuition of how the weight updates are carried out in our particular implemen-
tation, let us consider figure 3.2.

24

(a)

Figure 3.2: Single layer of CoAgent network, showing how weight vector is used with neurons
and softmax function to carry out action distribution generation and sampling.

As seen in figure 3.2, in the implementations of our CoANs we use isolated backpropagation to
update the weights for a CoAgent. The agents select an action from a Bernoulli distribution
generated by a softmax function that takes as inputs, the outputs of two linear layer nodes. In
this isolated manner we can use the policy gradient loss to backpropagate error signals from the
action selected by the CoAgent to the weights of the CoAgent.

Said another way, a single CoAgent uses a linear layer parameterised by weight vector θ0,0 to
deterministically map from an input state vector s0 to a pair of output nodes. The values
from these two nodes are then used as inputs for a softmax function to produce a Bernoulli
distribution that provides probabilities for either an action of 1 or 0 being sampled. Once
sampled, the CoAgent’s action forms the input of the following layer s0,1.

The equation 3.16 then describes the updates of the first CoAgent i = 0 in the first layer j = 0,
for weight vector θ0,0, where Q

θ (S0,0, A0,0) is a reward signal that can be global, local to the
layer or local to the individual agent. For our experiments we use only global and layer-wise
signals. lnπθ (A0,0 | S0,0) is a result of the CoAgent’s selected action.

25

3.5 Datasets

3.5.1 MNIST

The most popular computer vision benchmark is the MNIST dataset [Deng 2012]. It consists of
28x28 grayscale images of handwritten digits from 0 to 9 with a training set of 60,000 examples,
and a test set of 10,000 examples.

3.5.2 Fashion-MNIST

A common computer vision critique of the MNIST dataset is that it is too easy and overused
1. The Fashion-MNIST was developed to be a more challenging drop-in replacement task for
MNIST [Xiao et al. 2017]. It has the same 28x28 grayscale image format as well as 10 classes of
images. The images are of various clothing or fashion items and accessories e.g. shirts, pants,
shoes, bags. The dataset is from the Zalando group2, an fashion e-commerce platform. There
are 7000 images per class, a training set of 60000 images, a test set of 10000 images.

We use it in this work to see if there is a more challenging case where a REINFORCE CoAN
fails and an AC CoAN succeeds, or if at least the performance gap is somewhat narrower.

3.6 Experiments

This section provides a brief overview of the experiments carried out. The results and discussion
are dealt with in the following chapter.

We provide a description of experimental parameters in Section 3.6.1, while Section 3.6.2 de-
scribes the metrics measured both to ascertain performance but also to gain insight into learning
dynamics.

In Section 3.6.3, we describe using Vanilla CoAN REINFORCE as a control cases, showing the
bounds for successful learning in terms of breadth and depth.

In Section 3.6.4, we describe how we test Hypothesis 1 and show how REINFORCE can use
a sampled baseline to reduce noise at depth and increase performance in a CoAN. In Section
3.6.5, we explain how we test Hypothesis 2, first using REINFORCE with a learned baseline
and then for an Actor-Critic setup.

3.6.1 Hyperparameters

The following section discusses details that apply to all of the experiments. All experiments are
carried out on the finite horizon MDP described in Section 3.4. Additionally all experiments
are run over at least 5 random seeds on both MNIST and F-MNIST datasets.

The behaviour in CoANs can differ significantly with respect to depth d, the number of layers
in a CoAN and width w, the number of CoAgents per layer. For this reason for every test we

1https://twitter.com/goodfellow ian/status/852591106655043584
2https://jobs.zalando.com/en/tech/?gh src=281f2ef41us

26

run permutations that include at least 32, 64, 128, 256 and 512 CoAgents per layer for depths
of up to 6 layers.

For our results, for visual clarity, we select results to display that we believe best represent a
group’s behaviour for a specific test. These groups are either narrower or wider CoANs, with 32
and 64 CoAgents per layer falling for most results into the narrower CoAN category and 128,
256 and 512 falling into the wider CoAN category. At times behaviour clusters into 3 groups
where we see 128 CoAgents per layer separating into an additional medium width CoAN group.
We point these groupings out when they occur in the results.

When running tests concerning the depth of a neural network, detecting a complete failure to
learn may be difficult, as deeper neural, having potentially many more parameters to learn, may
eventually reach the same asymptotic performance, albeit after many more epochs. We limit
our training to 500 epochs and discuss our results in terms of relative performance within this
range.

The values from Gupta et al. [2021] were used for additional hyperparameters. Basic hand
tuning was carried out on each. For each, values were perturbed slightly higher and lower to
determine the impact on training. In each of these cases the results of this hand tuning showed
that values chosen by Gupta et al. [2021] performed as well or better than the perturbations.
Hyperparameters included a batch size of 32, an actor learning rate (α) of 0.00048 and a ratio
of actor to critic learning rates of 2. That is, for the critic a learning rate of 0.00024 is used. For
both actor and critic networks, the learning rate used for each node is the same. Additionally, as
we are trying to answer an open question from Gupta et al. [2021], in line with their experimental
setup, we keep both these learning rates constant with respect to the CoAN breadth and depth.

The variations in the breadth and depth of the critic network showed the same trend as in Gupta
et al. [2021], where increasing breadth and / or depth showed increases in performance. To limit
computational overhead, a standard critic was chosen, using a single hidden layer of 128 nodes.

With the above in place the following optimisers were compared: RMSprop [Tieleman et al.
2012], Adam [Kingma and Ba 2014], stochastic gradient decent (SGD) [Amari 1993]. RMSprop
consistently produced the best performance across configurations.

3.6.2 Metrics

We measure metrics to ascertain network performance as well as metrics to gain insight into the
learning dynamics of the CoANs.

We use the following metrics to measure performance:

1. Asymptotic Mean Classification Accuracy: The highest classification reached.

2. Convergence time: This is the amount of time it takes to reach an asymptotic mean
classification accuracy.

3. Variance of Accuracy: The variance of classification accuracy during training.

The behaviour of narrower and wider CoANs differ significantly. To help expand on these
differences we use additional measures as suggested by Gupta et al. [2021], namely the the
entropy and sparsity of the CoAN.

27

As the sum of surprise described by Shannon [1948], entropy is a useful to gauge the stochastic
nature of our network.

As seen in figure 3.2a we use a softmax function to generate our CoAgent’s action probability
distribution from the outputs of two torch linear layer neurons. The entropy of a layer serves
as an indicator for the mean stochasticity of the layer for that episode of training. That is,
a high entropy for a single CoAgent arises when that CoAgent’s Bernoulli distribution that is
produced by that CoAgent’s weight vector and is used for sampling actions, has approximately
equal probabilities of providing a sampled 0 or 1, 50% for either.

By measuring the mean neuronal activation, whether a 0 or 1 is selected as an action, we can
measure the mean sparsity of our learnt representations per layer.

However when the distribution is heavily skewed in either direction, for example a 99% chance
for sampling a 0 and conversely a 1% chance of sampling a 1, then this entropy drops very low.
One can consider a drop in mean entropy from 1 toward 0 of a layer, as a progression of that
layer from stochastic toward being almost deterministic.

Additional metrics

We also record the mean and variance many other metrics for each layer during training and
testing. These include but are not limited to the grad norm, critic value function loss and
reward. All records of results and preliminary results are available 3.

3.6.3 Bounds and Control Case

We ran one experiment to establish a control case and to understand how varying the depth
and breadth of a CoAN using REINFORCE to solve classification tasks on our datasets. The
details are described in Experiment 1.

Experiment 1 Bounds and Control Case

We adapt the CoAN REINFORCE algorithm from Gupta et al. [2021] that uses a heterogeneous
update rule for the output layer to use a homogeneous update rule throughout. We do this
in order to mitigate additional potential complexities that may confound observations. The
REINFORCE algorithm with homogenous update rule is shown in Algorithm 1. More on this
design decision and a comparison between these two algorithms in the Appendix A.1.

The policy gradient for a CoAgent network where each neuron’s policy is updated using REIN-
FORCE can be expressed as

∆θi,j = α G ∇ lnπθ (Ai,j | Sj) CoAN REINFORCE (3.17)

Where the undiscounted return G is the same for each CoAgent in every layer as shown in
equation 3.5.

3https://wandb.ai/coans/coan ac results

28

Algorithm 1 CoAN REINFORCE — Homogeneous updates

Input: a dataset D
Input: a policy parameterisation θi,j for each CoAgent πθ(a|s)
Algo param: step size α > 0
Algo param: number of CoAgents per layer n, number of layers k
Initialise: each set of CoAgent policy parameters πi,j ∈ Rd

while epoch is not terminal do
for e episodes in dataset do ▷ where each episode is a dataset sample

x, y ∼ D
S0 ← x

for layer j in k layers do
aj ∼ πθ(Sj |Aj)
sj+1 ← aj

G← Rk ← − err(ak, y)

for layer j in k layers do
θj,e ← θj,e + θj,e−1 α G ∇ lnπθ (Aj | Sj)

To roughly explore the functional bounds of a CoAN using REINFORCE updates, we test by
training on our datasets. We vary the hyperparameters depth d of the layers, and width w
number of CoAgents, in each layer.

Expectations

Our expectations for the results of Experiment 1 are as follows:

– Bounds: From existing published results, we expect the lower bounds for number of Co-
Agents in a single layer that can successfully learn to be about 8 CoAgents. Existing
literature does not suggest an upper bound for either the number of agents in a single
layer or for the number of layers at which failure to learn may occur.

– Entropy : The only layer that has been shown by Gupta et al. [2021] to exhibit very
low mean entropy and become almost effectively deterministic is the first layer of a CoAN,
while additional layers showing an initial drop in entropy that then rise back up, becoming
once again more stochastic. We expect this behaviour for additional layers, however we
have no expectation for the impact of additional CoAgents per layer.

– Sparsity : Based on existing research in Gupta et al. [2021], we expect sparsity to approx-
imate a mean of 0.5.

– Datasets: Considering the experiments run on F-MNIST, the classification task is more
challenging than MNIST, CoAN REINFORCE may fail but we at least expect some drop
in an aspect of performance.

29

3.6.4 Testing Hypothesis 1 - Variance Reduction with Unbiased Sampled
Baseline

We ran one experiment to determine if variance reduction is beneficial at all tested depths of
CoANs. The details are described in Experiment 2.

Experiment 2 Variance Reduction with Unbiased Sampled Baseline

As CoANs lie at the intersection of Multi-agent reinforcement learning and neural networks
making assumptions about behaviour is not always possible. Despite there being a good chance
that less variance will improve performance, we choose to test and show this explicitly.

With this experiment we show using a sampled baseline as an unbiased variance reduction
method, that variance is a component of this noise and that it can be somewhat mitigated with
this method at all depths tested.

A perfect baseline would be the true value of a state. Without an oracle or the opportunity to
take an infinite number of samples, we are only able to approximate the true value of a state.
As we wish to better understand the cause of poor state-value estimation bias at deeper layers
of our CoAN, we can compare baseline methods that do not use this form of estimation, such
as an average of sampled returns, and those that do, such as learnt state-value function.

For information of why a baseline decreases variance without increasing bias please see section
2.2.2.

We use the same running average baseline as Gupta et al. [2021] that updates using the sampled
return G for each episode trajectory e described by

Ĝe = η Ĝe−1 + (1− η)Ge

Ĝe = b
(3.18)

Where η is a decay parameter. For this experiment, as in previous work we use η = 0.99. As
shown in the algorithm 1 there is a single dataset sample per episode e. For example, e − 1
refers to the previous episode or dataset sample.

The running average baseline is used with Algorithm 1 modifying the REINFORCE update as
follows:

∆θi,j = α (G− b) ∇ lnπθ (Ai,j | Sj) CoAN REINFORCE with baseline (3.19)

where the baseline b is calculated using Equation 3.18.

Expectations

Policy gradient methods exhibit high variance in practice as discussed in section 2.2. Variance
reduction has been shown to be a key intervention for these methods [Sutton and Barto 2018b].
CoANs can be considered a multi agent reinforcement learning (MARL) systems [Thomas and
Barto 2011] and variance reduction has been shown to improve performance of MARL systems

30

[Buşoniu et al. 2010; Canese et al. 2021a]. We expect that there will be some increase in
performance for a CoAN of any depth and any number of CoAgents per layer.

3.6.5 Testing Hypothesis 2 - Variance Reduction with Biased Learned Value
Functions

For learned base lines and Actor-Critic CoANs there are a number of various ways one could
produce a state-action value function or critic in our multi-agent setting where CoAgents can
share a value functions and their estimates. We could (1) train a value function to produce a
value estimate for each CoAgent q(Sj , Ai,j) similar to the critic used in Foerster et al. [2018].
Alternatively (2) a layer-wise value function q(Sj , Aj) or perhaps even (3) a value function for the
entire network over an episode q(S,A). Here we choose (2) a layer-wise value function, such that
there is a separate value function and therefore a state or state-action value estimate for each
layer. This setup produced the best results between (2) and (3) and avoided the implementation
complexity of (1) which is beyond the scope of our current investigation. We do believe that (1)
is an opportunity for further investigation.

Here we run four experiments. In experiment 3 we run an experiment to test the impact of
bootstrapping bias on learning for CoANs using Actor Critic methods, as well as the impact
that depth has. Experiment 4 tests the impact of depth on performance of learned baselines.
Experiments 5 and 6 test the impact of adding noise to the value functions of learned baselines
and Critic.

Experiment 3 Critic Bootstrapping and Actor-Critic at Depth

For a background on Actor-Critic and temporal difference methods please see section 2.2.3.

The simplest possible Actor-Critic algorithm that we can apply to a CoAN is a Q value Actor-
Critic, CoAN Q-AC 2, where a state-action value function is used for the critic to give the policy
gradient

∆θi,j = Qw
j (Sj , Aj)∇ lnπθi,j (Ai,j | Sj) CoAN Q-AC (3.20)

We can also use an Advantage Actor Critic to give us a CoAN A2C 2, where the update becomes

∆θi,j = (Qw,j (Sj , Aj)− b)∇ lnπθ (Ai,j | Sj) CoAN A2C (3.21)

31

Algorithm 1 is modified to include the critic updates for CoAN Q-AC and CoAN A2C such that

Algorithm 2 CoAN Q-AC and A2C — Temporal Difference Critic Updates

Input: a dataset D
Input: a policy parameterisation θi,j for each CoAgent πθ(a|s)
Algo param: step size α > 0
Algo param: number of CoAgents per layer n, number of layers k
Initialise: each set of CoAgent policy parameters πi,j ∈ Rd

while epoch is not terminal do
for e episodes in dataset do ▷ where each episode is a dataset sample

x, y ∼ D
S0 ← x

for layer j in k layers do
wj ← wj−1 + α (Qw,j(sj , aj)−Qw,j−1 (sj−1, aj−1))∇wj−1Qw,j−1 (sj−1, aj−1)
sj+1 ← aj

G← Rk ← − err(ak, y)

for layer j in k layers do
θj,e ← θj,e + θj,e−1 α Qw,j(sj , aj) ∇ lnπθ (Aj | Sj) ▷ actor update

To note for the algorithms 3 and 2 of CoAN Q-AC and CoAN A2C, for brevity we have combined
their algorithmic depiction. This shows only CoAN Q-AC, to modify them for CoAN A2C,
simply add a baseline term to the actor updated, as such (Qw,j(sj , aj)− b).

The update for the critics using MC methods is described as

Algorithm 3 CoAN Q-AC and A2C — Monte Carlo Critic Updates

Input: a dataset D
Input: a policy parameterisation θi,j for each CoAgent πθ(a|s)
Algo param: step size α > 0
Algo param: number of CoAgents per layer n, number of layers k
Initialise: each set of CoAgent policy parameters πi,j ∈ Rd

while epoch is not terminal do
for e episodes in dataset do ▷ where each episode is a dataset sample

x, y ∼ D
S0 ← x

for layer j in k layers do
aj ∼ πθ(Sj |Aj)
sj+1 ← aj

G← Rk ← − err(ak, y)

for layer j in k layers do
wj,e ← wj,e−1 + α (Ge−1 −Qw,j (sj , aj))∇wj,e−1Qw,j (sj , aj) ▷ critic update
θj,e ← θj,e + θj,e−1 α Qw,j(sj , aj) ∇ lnπθ (Aj | Sj) ▷ actor update

32

To note, using a Monte Carlo update for the critic remove the potential benefit from temporal
difference variance reduction. However we do this here as a means to show the impact that
bootstrapping bias has in a CoAN.

Expectations

From existing work on CoAN Actor-Critic methods Gupta et al. [2021], we expect the per-
formance of these methods to be significantly poorer than our control case of a CoAN using
REINFORCE updates.

As no results have been published on the affect of increased depth to CoAN Actor-Critic methods
and the cause for poor performance of these methods is not understood, we do not have an
expectation for the performance of these methods in deeper CoANs.

As bootstrapping is a notorious source of instability, being one of the three components of deadly
triad [Sutton and Barto 2018b], the other two being function approximation and off-policy
methods. For a CoAN system that is noisy and unstable, one could expect that removing it
would provide an increase in performance, however the CoAN is also a high variance system, such
that it is possible that updates over shorter trajectories could result in increased performance.
For these reason we did not have a set expectation for the affect of the bootstrapping for critic
updates.

Experiment 4 Learned Baseline at Depth

Here we test the impact of depth on learned baselines. To apply a learned baseline to REIN-
FORCE we use the same CoAN REINFORCE with baseline update equation 3.19 as in sampled
baselines. Where b is a learned value function instead of a sampled return. We use the same
value estimation methods as Gupta et al. [2021]. A parameterised value function Vw for each
layer j of the CoAN is learned using Monte Carlo updates.

wj,e ← wj,e−1 + α (Ge − Vw,j (sj))∇wj,e−1Vw,j (sj) state value function (3.22)

We compare the performance to our vanilla REINFORCE control case in experiment 1 and to
REINFORCE with sampled baseline in experiment 2

Expectations

From existing work [Gupta et al. 2021] we expect the performance to be good in shallow CoANs.
We do not have expectations for performance in deeper CoANs.

Experiment 5 Adding Noise to Critic Observations

To have adequate performance to be able to show drops from introducing additional noise, we
carry out noise tests using Monte Carlo critic updates using CoAN A2C from algorithm 3. We
compare the performance between a shallower and deeper CoAN with noise injected into the
last hidden layers value function.

When injecting noise into a layer’s value function, we consider the nature of state observations
differ for the input layer and for the hidden layers. The input layer state observation vector

33

s0, an image, is ∈ Rn whereas the hidden layers state observation vector sh is a binary output
from the preceding layer is ∈ 2n. This has significant consequences when adding noise to a
signal. Consider that one can apply an arbitrary measured amount of Gaussian noise to the
entire input image vector, however a similar operation to an entire hidden layer state observation
vector would scramble or make completely noisy the entire vector. For this reason, for a fair
and consistent comparison between layers, we only compare the impact of noise to hidden layers
value estimators.

To inject noise into a hidden layer, instead of applying noise to the entire vector we instead
select an upper bound percentage p of the vector. For each noise transform we then randomly
vary actual percentage of the vector that receives this noise up to that threshold. This is done
so that there is also randomness in the percentage of noise added with each transform.4

State observation vector s of the deepest hidden layer’s state observation j = k − 1 to create a
noisy state observation vector s′. We choose this value function at this layer and not the output
layer j = k as the output layer will always have only the number of CoAgents as the number of
prediction classes.

As mentioned in section 3.6.1 we run all tests on a permutation of 32, 64, 128, 256 and 512
CoAgents per layer and select result that are a good representative of a group’s behaviour.
Additionally all tests were carried out with permutations for amounts of 0%, 10%, 20%, and 30%
noise being injected into the critic state observation. The graded impact of this is demonstrated
in figure 4.9.

Experiment 6 Adding Noise to Baseline Value Function Observations

To investigate what might be the cause of this decrease in performance that only occurs for
deeper CoANs using REINFORCE with a learned baseline, we test the sensitivity to additional
noise in the value function’s state observation. Compare this sensitivity in shallower and deeper
CoANs.

Noise is generated and added to value function state observation in the same manner as experi-
ment 5. We use a noisy state observation s′ for the value function such that the weight updates
are then

wj,e ← wj,e−1 + α
(
Ge − Vw,j

(
s′j
))
∇wj,e−1Vw,j

(
s′j
)

noisy state value function (3.23)

This gives us the following policy gradient for a CoAN using REINFORCE with a learned
baseline, such that the baseline is trained and tested with noisy observations

∆θi,k−1 = α (G−Vw(s′i,k−1) ∇ lnπθ (ai,k−1 | si,k−1) CoAN REINFORCE with noisy baseline
(3.24)

As a control however, when p = 100%, that is 100% noise, we use a completely artificial noise
signal for all the value functions of all layers. This is to demonstrate an observed behaviour

4However at the time of writing is has become apparent that this adds an extra layer of complexity that is
unnecessary, however it is sufficient as a source of noise and we do not expect it to negatively impact the results
of our experiments. A simpler method that we did use in preliminary experiments simply flipped up to 50% of
the bits and then randomly permuted those flipped bits.

34

of the learned baseline in this context. That is, when the learned baseline is trained on only
noise, it approximates a rolling average baseline. We expand on these observations in the results,
showing as well incremental changes in behaviour with the addition of noise.

Expectations

From existing work Gupta et al. [2021] we expect to see good performance when used with
shallow CoANs. We then expect to see progressively worse performance when used with deeper
CoANs. As Schoenholz et al. [2017]; Pretorius et al. [2020] suggests, for stochastic neural
networks, due to the stochastic noise in each successive layer as the CoAN gets deeper, the
signal gets nosier, making information propagation harder, which we expect will make it harder
for the value function to produce a good estimate.

3.7 Summary

In this chapter we provide a problem statement and research questions extending the work of
Gupta et al. [2021]. In these we directly address the open question from their work: Why is the
bias introduced by a critic in an Actor-Critic CoAN extremely detrimental to learning?

We introduce two hypotheses directed at variance reduction methods in CoANs in order to
specifically probe these questions. We utilise the same problem definition as Gupta et al. [2021],
but provide our own interpretation. This problem definition serves as the general foundation
for all of our experiments. We provide a detailed description and set of expectations for each of
our six experiments.

In the following Chapter 4 we provide the results of these six experiments with a discussion for
each.

35

Chapter 4

Results and Discussion

The analysis of the results is organised with respect to the experiments outlined in Chapter 3.
Each section of this chapter provides results and discussion for each of these experiments.

In all results, when referring to CoAN depth, the output layer is omitted. The output layer will
always have as many CoAgents as prediction classes where as we vary the number of CoAgents
for the input layer and all hidden layers. This is the number indicated for instance on the x-axis
of the Figure 4.1b, and Figure 4.1c.

Regarding additional metrics to our main performance metrics such as entropy and sparsity
of CoANs, as described in section 3.6.2, we specify if they deviate significantly from what is
depicted in experiment 1, otherwise it can be assumed we did not see a significant discernible
trend from them during training.

For all experiments we saw a general trend of training with less variance on the F-MNIST
dataset as compared with MNIST. This is a surprising result as F-MNIST was made to be
a more difficult dataset as we mentioned in Section 3.5.2. The asymptotic performance was
however consistently lower on F-MNIST. We show results for both MNIST and F-MNIST in
different cases. One can assume trends were consistent on both datasets unless we specify that
they were not.

36

4.1 Results for Experiment 1 - Bounds and Control Case

(a)

(b) (c)

Figure 4.1: Mean accuracy overview for CoANs of various depths and widths after 500 epochs
using REINFORCE algorithm 1

Figure 4.1, shows a summary of runs such as those depicted in figure 4.2. It shows us that at the
extremes of depths and widths we see different behaviours in performance. Figure 4.1b shows
us the accuracy for shallower CoANs. For CoANs of 1 and 2 layers, widths of 2-8 CoAgents
show the ability to learn, albeit at a much lower asymptotic accuracy as compared to all wider
CoANs. In layer 3 we see that widths of 2-8 CoAgents do not learn. Widths of 16 CoAgents
can learn but only to a very low accuracy of approximately 26%. Widths of 32 to 512 CoAgents
all learn to over 75% for shallow CoANs.

In Figure 4.1c, we see deeper CoANs. Widths of 2-16 CoAgents fail to learn at these depths. A
width of 32 CoAgents shows some learning but only to an accuracy of 40% for four layer CoANs,
25% for 5 Layer CoANs and 20% for 6 Layer CoANs. Widths of 64, 128 and 256 CoAgents per
layer reach an accuracy of over 75% for layer 4. We see that only a width of 128 and 256
CoAgents get an accuracy over 75% for depths of 6 layers. Only a width of 256 get over 75%
accuracy at a depth of 6 layers. We see a sharp drop off of accuracy for 512 CoAgents per layer
for CoANs of depth 5 and 6 layers.

To summarise the above, we see that very narrow CoANs do not learn well at depths and very
wide CoANs do not learn well at depth

37

(a)

(b) (c)

(d)

Figure 4.2: Mean accuracy for CoANs various depths and widths after 500 epochs using REIN-
FORCE algorithm 1

In figure 4.2 we see the same general pattern of learning as in figure 4.1. Here we have information
on the variance of accuracy during training and the trajectory of mean accuracy per epoch.
Figure 4.2d for a CoAN of 512 CoAgents per layer is notable as it indicates that for this width,
it is the only case tested where a single layer CoAN is outperformed by deeper CoANs. In
figures 4.2b and 4.2c we see an notable increase in accuracy variance in addition to a drop in
asymptotic accuracy.

Both figures 4.2 and 4.1 show that the performance CoANs is significantly impacted by an
increased depth.

38

(a)

(b) (c)

Figure 4.3: Entropy from layer 2 for CoANs of depth 2 and 4 layers

We recorded metrics for each layer’s entropy during training. We show figure 4.3 as it both
depicts the general behaviour of all hidden layers’ entropy well and it shows two training tra-
jectories for a narrow and wide CoAN that learn successfully at a shallow depths but fail in
deeper CoANs. The dashed lines show cases of very poor performance. This gives us some
potential insight into the behaviour of the networks in cases of good and poor performance. For
32 CoAgents per layer, for poor performance we see that the entropy does not drop as low as
in the case of higher performance and that the variance of the entropy is noticeably higher. For
512 CoAgents per layer, we see that, while subtle, the curve in the case of higher performance
dips and then rises, where as in the case of lower performance the curve is flat.

39

(a)

(b) (c)

(d) (e)

Figure 4.4: Sparsity from layer 2 and 3 for CoANs of depth 3 and 5 layers

In figure 4.4 we have selected cases to show the difference in sparsity for cases of high performance
and cases of poor performance.

Figures 4.4b and 4.4c show the sparsity of narrow and wide CoANs performing well in a 3 layer
CoAN. The bold lines can then be contrasted with their counterparts of poor performance in a
5 layer CoAN.

We noted a general trend towards moderately sparse representations for good performance.

40

4.2 Results for Experiment 2 - Variance Reduction with Unbi-
ased Sampled Baseline

(a)

(b) (c)

(d)

Figure 4.5: Accuracy for REINFORCE with sampled baseline across various CoAN depths with
various numbers of CoAgents per layer.

Interestingly our expectations and hypothesis 1 hold only for a sufficiently small widths of
CoAgents. As we can see for all figures in 4.5 the performance of CoANs with widths of 64
and 128 CoAgents per layers benefiting from a sampled baseline, whereas the performance of
CoANs with widths of 512 CoAgents becoming highly varied. It appears that for CoANs of any
depth, when there are sufficiently many CoAgents, a sampled running average baseline impedes
performance. This is an area for possible further exploration.

41

4.3 Results for Experiment 3 - Critic Bootstrapping and Actor-
Critic at Depth

(a)

(b)

(c) (d)

Figure 4.6: Critic Bootstrapping, F-MNIST

In figure 4.6b we can see that Q-AC generally has a low performance but is able to learn using
bootstrapping. Interestingly as seen in figures 4.6c and 4.6d even though A2C has higher per-
formance for Monte Carlo updates, the bootstrapping bias has a much larger impact, impeding
learning completely. The reason for this is not clear. In both cases though we can see that
bootstrapping bias has a very significant impact on learning. We believe this bootstrapping
bias is a major contributor to poor performance of Actor-Critic as noted by Gupta et al. [2021].
This does show however that understanding how bootstrapping for CoANs is a potential area
of future research, though this may necessitate reformulation of the problem.

42

4.4 Results for Experiment 4 - Learned Baselines at Depth

(a)

(b) (c)

(d)

Figure 4.7: Learned baseline applied to every layer of the CoAN. As depth increases, learned
baseline negatively affects learning.

In figure 4.7 we can see the progressive decrease in performance of a learned baseline for CoANs
of all widths tested with an increase in CoAN depth. While the asymptotic performance does not
deteriorate necessarily, we do see a significant increase in variance. The contrast in performance
between the learned baseline and the sampled baseline as depth increases is especially notable.
We can see in figure 4.7b that the REINFORCE with a learned baseline out performs a sampled
baseline in a two layer CoAN. The deteriorating performance is then evident as the depth
increases to four layer CoAN in figure 4.7c and then to a five layer CoAN in figure 4.7d

43

4.5 Results for Experiment 5 - Noisy Value Function Observa-
tions - Actor-Critic

(a)

(b)

(c)

(d)

Figure 4.8: Adding noise to critic state observations. Accuracy on F-MNIST

44

We see an example of narrower CoAN group behaviour in figure 4.8b of 64 CoAgents per layer
and an example of wider CoAN group in figure 4.8c of 128 CoAgents per layer. Figure 4.8d1 is
an example of wider CoAN group behaviour.

As the 32 CoAgent per layer had similar performance to the 64 CoAgents per layer, albeit
slightly less stable is not shown. The 512 CoAgents per layer test did not learn, however we can
see already that the 256 CoAgent per layer in figure 4.8d result as seen in figure demonstrates
a signification drop in performance. As the accuracy of the wider CoANs groups is so low and
the variance of the accuracy so high for both the case of no noise in blue and where 30% noise
is injected into the last hidden layer critic state observation, shown in yellow, it is an unreliable
indication of the impact of noise that is being tested. Thus for this experiment we consider the
128 CoAgent per layer result to be representative of the group behaviour for wider CoANs.

We can see that the narrower CoAN of 64 CoAgents per layer in figure 4.8b is not sensitive to
noise added to the last hidden layer critic state observation and the accuracy does not differ
significantly between a two layer and three layer CoAN for a 30% injection of noise. That is,
there is a consistent difference between the change in performance between the blue and yellow
dashed lines of a two layer CoAN and the solid lines of the 3 layer CoAN.

As seen in figure 4.8c there is a significant difference present for a wider CoAN of 128 CoAgents
per layer. This confirms our hypothesis 2 for a subset of CoAN widths.

(a)

(b) (c)

Figure 4.9: Adding noise to critic state observations. Accuracy on F-MNIST. Graded noise
injection.

Figure 4.9 serves to demonstrate the behaviours of narrower and wider CoANs as noise is incre-
mentally added in 10% intervals from no noise up to 30% noise. This figure repeats some of the

1The number of epochs for this run is truncated at 200. Permutations involving deeper and wider CoANs
take much longer to run making them more susceptible to compute cluster outages, which is the cause of the
truncation here

45

results from figure 4.9 but adds new plots for 10% and 20% amounts of noise. Repeated results
are shown in bold.

Figure 4.9b shows the case of the narrower CoAN, where we can see that with each incremental
addition of noise, the impact is not significant as each plot is deeply embedded in the variance
of one another. In figure 4.9c we see the wider CoAN of 128 CoAgents per layer. We can clearly
see the incremental impact of noise with each addition 10% of noise injection.

Our results do not show why a narrower CoAN is not impacted with increased depth in the same
manner a wider CoAN is. This is an area for possible future investigation. One may consider an
investigation on the impact of higher dimensional inputs for value functions in CoANs, as higher
dimensional inputs have been shown to be impactful in neural network function approximators
in other contexts [András 2018].

4.6 Results for Experiment 6 - Noisy Value Function Observa-
tions - Learned Baselines

(a)

(b) (c)

Figure 4.10: Adding noise to baseline state value function state observation.

Adding noise to a learned baselines value function did not produce a fruitful result. There was
no immediate pattern or trend that we observed. We show the figure 4.10 as it does contrast
the behaviour of learned based lines when used on different datasets MNIST and F-MNIST.

With the incremental addition of noise to the learned baseline state observation irrespective
of the amount of noise, relative to the learned baseline without the addition of noise, at dif-
ferent widths and depths one sees no consistent increase or decrease in performance in terms

46

of asymptotic accuracy or the variance of accuracy during training. The asymptotic accuracy
could be relatively increased or decreased in no specific pattern with respect to the amount of
noise added. The same can be said for the accuracy variance.

Notable there was no accuracy higher than that of REINFORCE with a sampled baseline ob-
served and the control case of 100% noise followed a trend that approximated the sampled
baseline.

4.7 Summary

We summarize the results of our experimentation by highlighting the key findings from each
experiment, as follows:

– Experiment 1 : We demonstrated that for CoANs using Vanilla REINFORCE, performance
deteriorates with depth.

– Experiment 2 : We demonstrated that variance reduction is beneficial at all depths that
were tested, but only for a subset of CoAN widths. This confirms Hypothesis 1 for narrower
networks, but not for wider networks, in which performance was hindered by sampled
baselines.

– Experiment 3 : We showed that bootstrapping bias is significant for CoANs using Actor-
Critic methods.

– Experiment 4 : We showed that learned baselines performance deteriorates extensively with
depth.

– Experiment 5 : We confirm Hypothesis 2 for Actor-Critic on wider CoANs, but not on
narrower CoANs i.e. For wider, deeper CoANs, the impact of noise on a Critic value
function’s state observation is detrimental.

– Experiment 6 : We found no conclusive evidence.

47

Chapter 5

Conclusion

The aim of this work was to investigate how learning dynamics of CoAgent Networks (CoANs)
impacts learned value functions in deeper CoANs. In order to investigate this, we extended the
work of Gupta et al. [2021] by incorporating investigations where we varied the width and depth
of the CoANs, and injecting noise into the state observations of the learned function values,
comparing impact on performance in various configurations.

Our experiments showed that CoAgent networks (CoANs) using REINFORCE policy gradient
methods perform significantly worse as the depth of the CoAN increases. We showed that
variance reduction with a sampled baseline is a means of increasing performance for narrower
CoANs at depths. However for CoANs that are sufficiently wide, this variance reduction method
decreases performance not only at depth by also in shallower CoANs. Variance reduction is
however not sufficient to completely stabilise learning in deeper CoANs and despite variance
reduction there is a sharp drop off in performance with increasing depth.

Toward answering the open question on the poor performance of Actor-Critic methods in CoANs
from Gupta et al. [2021], we showed that the variance reduction methods that use learnt value
functions are both negatively impacted by increasing depth in CoANs. In Actor-Critic meth-
ods, bootstrapping bias demonstrated a large negative impact on performance. Additionally for
Actor-Critic methods, we showed that value functions in wider CoANs are more sensitive to ad-
ditional noise in their state observations, making them more susceptible to noise with increasing
depth of the CoAN.

The learning dynamics of CoANs differ significantly from traditional neural networks and have
not yet been thoroughly explored. CoANs offer a rich set of opportunities for further investiga-
tion. A significant source of instability, as is for any MARL system using policy gradient updates,
is the high variance of gradient estimates for each agent [Canese et al. 2021b; Hernandez-Leal
et al. 2017]. Better understanding of how this property affects the addition to CoAgents to
the network in width as compared to depth is a potential area for future research. Exploring
behaviour in settings where the network architecture is varied such as bottle necks or recurrent
networks is also an area for future work. As CoANs require only their local observations and a
global reward signal, networks with heterogeneous CoAgents are possible. This opens the door
to configurations of mixing agent types or interleaving layer types. Other formulations of the
problem are additional avenues that could be fruitful.

48

Bibliography

[Aenugu et al. 2019] Sneha Aenugu, Abhishek Sharma, Sasikiran Yelamarthi, Hananel Hazan,
Philip S. Thomas, and Robert Thijs Kozma. Reinforcement learning with spiking coagents.
ArXiv, abs/1910.06489, 2019.

[Amari 1993] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neu-
rocomputing, 5(4-5):185–196, 1993.

[András 2018] Péter András. High-dimensional function approximation with neural networks
for large volumes of data. IEEE Transactions on Neural Networks and Learning Systems,
29:500–508, 2018.

[Bacon et al. 2017] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic archi-
tecture. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[Baxter and Bartlett 2000] Jonathan Baxter and Peter L. Bartlett. Reinforcement Learning in
POMDP’s via Direct Gradient Ascent. In ICML, 2000.

[Bernstein et al. 2002] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilber-
stein. The complexity of decentralized control of Markov decision processes. Mathematics
of Operations Research, 27(4):819–840, Nov 2002. 01374.

[Buşoniu et al. 2010] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent rein-
forcement learning: An overview. In Innovations in multi-agent systems and applications-1,
pages 183–221. Springer, 2010.

[Canese et al. 2021a] Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari,
Daniele Giardino, Marco Re, and Sergio Spanò. Multi-agent reinforcement learning: A
review of challenges and applications. Applied Sciences, 11(11), 2021.

[Canese et al. 2021b] Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari,
Daniele Giardino, Marco Re, and Sergio Spanò. Multi-agent reinforcement learning: A
review of challenges and applications. Applied Sciences, 11:4948, 2021.

[Claus and Boutilier 1998] Caroline Claus and Craig Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. AAAI/IAAI, 1998(746-752):2, 1998.

[Deng 2012] Li Deng. The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[Foerster et al. 2018] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy gradients. In AAAI,
2018.

[Goodfellow et al. 2015] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep learn-
ing. Nature, 521:436–444, 2015.

49

[Gupta et al. 2021] Dhawal Gupta, Gabor Mihucz, Matthew Schlegel, James Kostas, Philip S
Thomas, and Martha White. Structural credit assignment in neural networks using rein-
forcement learning. Advances in Neural Information Processing Systems, 34, 2021.

[Hernandez-Leal et al. 2017] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and En-
rique Munoz de Cote. A survey of learning in multiagent environments: Dealing with
non-stationarity. arXiv preprint arXiv:1707.09183, 2017.

[Hu et al. 2021] Zijian Hu, Chengxiang Zhuge, and Wei Ma. Towards a very large scale traffic
simulator for multi-agent reinforcement learning testbeds. ArXiv, abs/2105.13907, 2021.

[Iqbal and Sha 2019] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent rein-
forcement learning. In International Conference on Machine Learning, pages 2961–2970.
PMLR, 2019.

[Kaelbling et al. 1996] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research, 4:237–285, May 1996.

[Kingma and Ba 2014] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[Kostas et al. 2019] James Kostas, Chris Nota, and Philip S. Thomas. Asynchronous coagent
networks: Stochastic networks for reinforcement learning without backpropagation or a
clock. arXiv:1902.05650 [cs, stat], Feb 2019. arXiv: 1902.05650.

[Lillicrap and Santoro 2019] Timothy P Lillicrap and Adam Santoro. Backpropagation through
time and the brain. Current opinion in neurobiology, 55:82–89, 2019.

[Lowe et al. 2017] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mor-
datch. Multi-agent actor-critic for mixed cooperative-competitive environments. Neural
Information Processing Systems (NIPS), 2017.

[Mahadevan 1996] Sridhar Mahadevan. Average reward reinforcement learning: Foundations,
algorithms, and empirical results. Machine learning, 22(1):159–195, 1996.

[Merkh and Montúfar 2019] Thomas Merkh and Guido Montúfar. Stochastic feedforward neural
networks: Universal approximation. ArXiv, abs/1910.09763, 2019.

[Nguyen et al. 2018] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assign-
ment for collective multiagent RL with global rewards. Advances in neural information
processing systems, 31, 2018.

[Nota and Thomas 2019] Chris Nota and Philip S Thomas. Is the policy gradient a gradient?
arXiv preprint arXiv:1906.07073, 2019.

[Pretorius et al. 2020] Arnu Pretorius, Elan Van Biljon, Benjamin van Niekerk, Ryan Eloff,
Matthew Reynard, Steve James, Benjamin Rosman, Herman Kamper, and Steve Kroon.
If dropout limits trainable depth, does critical initialisation still matter? a large-scale
statistical analysis on ReLU networks. Pattern Recognition Letters, 138:95–105, 2020.

[Schoenholz et al. 2017] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-
Dickstein. Deep information propagation. arXiv:1611.01232 [cs, stat], Apr 2017. arXiv:
1611.01232.

[Schulman et al. 2016] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel.
Gradient estimation using stochastic computation graphs. arXiv:1506.05254 [cs], Jan
2016. arXiv: 1506.05254.

50

[Schulman et al. 2018] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel. High-dimensional continuous control using generalized advantage estima-
tion. arXiv:1506.02438 [cs], Oct 2018. arXiv: 1506.02438.

[Shannon 1948] Claude Elwood Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

[Sutton and Barto 2018a] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an
introduction. Adaptive computation and machine learning series. The MIT Press, second
edition edition, 2018.

[Sutton and Barto 2018b] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[Sutton et al. 1999a] Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with function approximation. In NIPS,
1999.

[Sutton et al. 1999b] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[Sutton et al. 2000] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function approximation. In
Advances in neural information processing systems, pages 1057–1063, 2000.

[Takeshi 2017] Daniel Takeshi. Going Deeper Into Reinforcement Learning: Funda-
mentals of Policy Gradients. https://danieltakeshi.github.io/2017/03/28/

going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/,
2017. Accessed: 2022-02-06.

[Tan 1997] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative learning.
Readings in Agents, pages 487–494, 1997.

[Thomas and Barto 2011] Philip S Thomas and Andrew G Barto. Conjugate Markov decision
processes. In ICML, 2011.

[Thomas and Barto 2012] Philip S Thomas and Andrew G Barto. Motor primitive discovery.
In 2012 IEEE International Conference on Development and Learning and Epigenetic
Robotics (ICDL), pages 1–8. IEEE, 2012.

[Thomas 2011] Philip S. Thomas. Policy Gradient Coagent Networks, page 1944–1952. Curran
Associates, Inc., 2011.

[Tieleman et al. 2012] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31, 2012.

[Tuyls and Weiss 2012] Karl Tuyls and Gerhard Weiss. Multiagent learning: Basics, challenges,
and prospects. AI Magazine, 33(3):41–41, 2012.

[Weber et al. 2019] Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit
assignment techniques in stochastic computation graphs. arXiv:1901.01761 [cs, stat], Jan
2019. arXiv: 1901.01761.

[Williams 1992] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

51

https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

[Williams 2004] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 2004.

[Xiao et al. 2017] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, 2017.

[Zhang et al. 2019a] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan
Zhou, Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Jessie Li. Cityflow: A multi-
agent reinforcement learning environment for large scale city traffic scenario. The World
Wide Web Conference, 2019.

[Zhang et al. 2019b] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent rein-
forcement learning: A selective overview of theories and algorithms. arXiv preprint
arXiv:1911.10635, 2019.

[Zhao et al. 2012] Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis
and improvement of policy gradient estimation. Neural Networks, 26:118–129, Feb 2012.
00098.

[Zini et al. 2020] Modjtaba Shokrian Zini, Mohammad Pedramfar, Matthew Riemer, and Miao
Liu. Coagent networks revisited. arXiv preprint arXiv:2001.10474, 2020.

52

Appendices

53

Appendix A

Design decisions

A.1 Heterogeneous vs Homogeneous updates

Here we provide further details for using a homogeneous update for REINFORCE, algorithm 1,
instead of a heterogeneous update, algorithm 4.

To note the major difference is in the update of the output layer. Algorithm 4 shows that this
update is not a reinforcement learning update, but rather, effectively a backpropagation update.

For algorithm 1, as seen in figure 3.2 in the implementations of our CoANs we use isolated
backpropagation to update the weights for a CoAgent. The agents select and action from a
Bernoulli distribution generate by a softmax function that takes as inputs, the outputs of two
linear layer nodes. In this isolated manner we can use the policy gradient loss to backpropagate
error signals from the action selected by the CoAgent to the weights of the CoAgent.

For algorithm 4 the loss being used is not a policy gradient loss, but rather a traditional back-
propagation loss. This is likely why it can solve classification tasks in isolation whereas the
output layer of algorithm 1 cannot.

Algorithm 4 reproduction from Gupta et al. [2021].

54

Algorithm 4 CoAN REINFORCE: Heterogeneous updates

Input: a dataset D
Input: a policy parameterisation θi,j for each CoAgent πθ(a|s)
Input: a parameterisation w for an output layer fw(s)
Algo param: step size α > 0
Algo param: number of CoAgents per layer n, number of layers k
Initialise: each set of CoAgent policy parameters πi,j ∈ Rd and output layer parameters w ∈ Rd

while epoch is not terminal do
for e episodes / samples in dataset do

x, y ∼ D
S0 ← x

for j in k do
aj ∼ πθ(Sj |Aj)
sj+1 ← aj

ak+1 ← fw(sk) ▷ output layer
G← Rk+1 ← − err(ak+1, y)

for j in k do
θj,e ← θj,e + θj,e α G ∇θ log πθ (Aj | Sj)

we ← we + we−1 α ∇wfw(sk) ▷ update output layer

(a)

(b) (c)

Figure A.1: Mean accuracy overview for CoANs of various depths and breadths after 500 epochs
using REINFORCE algorithm 4

55

(a)

(b) (c)

(d) (e)

(f) (g)

Figure A.2: Sparsity and entropy metrics for CoANs using REINFORCE algorithm using RE-
INFORCE algorithm 4

56

	Introduction
	Background and Related Work
	Methodology
	Results and Discussion
	Conclusion
	Appendices
	Design decisions

